The second law analysis in fundamental convective heat transfer problems

2003 ◽  
Vol 42 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Shohel Mahmud ◽  
Roydon Andrew Fraser
Author(s):  
R. V. Zhalnin ◽  
V. F. Masyagin ◽  
E. E. Peskova

The present paper is devoted to the construction of a parallel computational algorithm for solving convective heat transfer problems using the discontinuous Galerkin method on unstructured staggered grids. The computational algorithm is implemented on the basis of MPI parallel computing technology. A special feature of the algorithm is that auxiliary variables that occur when the diffusion terms are approximated by the discontinuous Galerkin method are not involved in interprocessor exchange. The developed parallel algorithm is applied to modelling of temperature dynamics in formation with a vertical injection well and hydraulic fracturing. The paper presents the results of a computational experiment and estimates the effectiveness of a parallel algorithm.


2009 ◽  
Vol 2009 ◽  
pp. 1-27 ◽  
Author(s):  
Abram Dorfman ◽  
Zachary Renner

A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.


Sign in / Sign up

Export Citation Format

Share Document