Length scale and time scale effects on the plastic flow of fcc metals

2001 ◽  
Vol 49 (20) ◽  
pp. 4363-4374 ◽  
Author(s):  
M.F. Horstemeyer ◽  
M.I. Baskes ◽  
S.J. Plimpton
2004 ◽  
Author(s):  
W. Li ◽  
S. Qu ◽  
T. Siegmund ◽  
Y. Huang

Simulations of indentation delamination of ductile films on elastic substrates are performed. A cohesive zone model accounts for initiation and growth of interface delaminations and a strain gradient plasticity framework for the length scale dependence of plastic deformation. With the cohesive zone model and the strain gradient formulation two length scales are introduced in to the analysis.


2010 ◽  
Vol 356 (6-8) ◽  
pp. 340-343 ◽  
Author(s):  
Dennis Bedorf ◽  
Konrad Samwer

1998 ◽  
Vol 54 (1-3) ◽  
pp. 111-115 ◽  
Author(s):  
R.C. Birtcher ◽  
S.E. Donnelly
Keyword(s):  

2018 ◽  
Vol 18 (07) ◽  
pp. 1850094 ◽  
Author(s):  
F. Hache ◽  
N. Challamel ◽  
I. Elishakoff

The present study investigates the dynamical behavior of lattice plates, including both bending and shear interactions. The exact natural frequencies of this lattice plate are calculated for simply supported boundary conditions. These exact solutions are compared with some continuous nonlocal plate solutions that account for some scale effects due to the lattice spacing. Two continualized and one phenomenological nonlocal UflyandMindlin plate models that take into account both the rotary inertia and the shear effects are developed for capturing the small length scale effect of microstructured (or lattice) thick plates by associating the small length scale coefficient introduced in the nonlocal approach to some length scale coefficients given in a Taylor or a rational series expansion. The nonlocal phenomenological model constitutes the stress gradient Eringen’s model applied at the plate scale. The continualization process constructs continuous equation from the one of the discrete lattice models. The governing partial differential equations are solved in displacement for each nonlocal plate model. An exact analytical vibration solution is obtained for the natural frequencies of the simply supported rectangular nonlocal plate. As expected, it is found that the continualized models lead to a constant small length scale coefficient, whereas for the phenomenological nonlocal approaches, the coefficient, calibrated with respect to the element size of the microstructured plate, is structure-dependent. Moreover, comparing the natural frequencies of the continuous models with the exact discrete one, it is concluded that the continualized models provide much more accurate results than the nonlocal Uflyand–Mindlin plate models.


Sign in / Sign up

Export Citation Format

Share Document