elastic substrates
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Vol 933 ◽  
Author(s):  
Vincent Bertin ◽  
Yacine Amarouchene ◽  
Elie Raphaël ◽  
Thomas Salez

The motion of an object within a viscous fluid and in the vicinity of a soft surface induces a hydrodynamic stress field that deforms the latter, thus modifying the boundary conditions of the flow. This results in elastohydrodynamic interactions experienced by the particle. Here, we derive a soft-lubrication model, in order to compute all the forces and torque applied on a rigid sphere that is free to translate and rotate near an elastic wall. We focus on the limit of small deformations of the surface with respect to the fluid-gap thickness, and perform a perturbation analysis in dimensionless compliance. The response is computed in the framework of linear elasticity, for planar elastic substrates in the limiting cases of thick and thin layers. The EHD forces are also obtained analytically using the Lorentz reciprocal theorem.


Author(s):  
Hui Zheng ◽  
Peijian Chen ◽  
Hao Liu ◽  
Yingying Zhang ◽  
Juan Peng

2021 ◽  
Vol 153 ◽  
pp. 104475
Author(s):  
S. Palumbo ◽  
A.R. Carotenuto ◽  
A. Cutolo ◽  
L. Deseri ◽  
N. Pugno ◽  
...  

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Natalie M. Landry ◽  
Sunil G. Rattan ◽  
Krista L. Filomeno ◽  
Thomas W. Meier ◽  
Simon C. Meier ◽  
...  

AbstractWe have previously shown that overexpression of SKI, an endogenous TGF-β1 repressor, deactivates the pro-fibrotic myofibroblast phenotype in the heart. We now show that SKI also functions independently of SMAD/TGF-β signaling, by activating the Hippo tumor-suppressor pathway and inhibiting the Transcriptional co-Activator with PDZ-binding motif (TAZ or WWTR1). The mechanism(s) by which SKI targets TAZ to inhibit cardiac fibroblast activation and fibrogenesis remain undefined. A rat model of post-myocardial infarction was used to examine the expression of TAZ during acute fibrogenesis and chronic heart failure. Results were then corroborated with primary rat cardiac fibroblast cell culture performed both on plastic and on inert elastic substrates, along with the use of siRNA and adenoviral expression vectors for active forms of SKI, YAP, and TAZ. Gene expression was examined by qPCR and luciferase assays, while protein expression was examined by immunoblotting and fluorescence microscopy. Cell phenotype was further assessed by functional assays. Finally, to elucidate SKI’s effects on Hippo signaling, the SKI and TAZ interactomes were captured in human cardiac fibroblasts using BioID2 and mass spectrometry. Potential interactors were investigated in vitro to reveal novel mechanisms of action for SKI. In vitro assays on elastic substrates revealed the ability of TAZ to overcome environmental stimuli and induce the activation of hypersynthetic cardiac myofibroblasts. Further cell-based assays demonstrated that SKI causes specific proteasomal degradation of TAZ, but not YAP, and shifts actin cytoskeleton dynamics to inhibit myofibroblast activation. These findings were supported by identifying the bi-phasic expression of TAZ in vivo during post-MI remodeling and fibrosis. BioID2-based interactomics in human cardiac fibroblasts suggest that SKI interacts with actin-modifying proteins and with LIM Domain-containing protein 1 (LIMD1), a negative regulator of Hippo signaling. Furthermore, we found that LATS2 interacts with TAZ, whereas LATS1 does not, and that LATS2 knockdown prevented TAZ downregulation with SKI overexpression. Our findings indicate that SKI’s capacity to regulate cardiac fibroblast activation is mediated, in part, by Hippo signaling. We postulate that the interaction between SKI and TAZ in cardiac fibroblasts is arbitrated by LIMD1, an important intermediary in focal adhesion-associated signaling pathways. This study contributes to the understanding of the unique physiology of cardiac fibroblasts, and of the relationship between SKI expression and cell phenotype.


2021 ◽  
Author(s):  
Merrill Asp ◽  
Minh Tri Ho Thanh ◽  
Arvind Gopinath ◽  
Alison Elise Patteson

The ability of bacteria to colonize and grow on different surfaces is an essential process for biofilm development and depends on complex biomechanical interactions between the biofilm and the underlying substrate. Changes in the physical properties of the underlying substrate are known to alter biofilm expansion, but the mechanisms by which biofilms sense and respond to physical features of their environment are still poorly understood. Here, we report the use of synthetic polyacrylamide hydrogels with tunable stiffness and controllable pore size to assess physical effects of the substrate on biofilm development. Using time lapse microscopy to track the growth of expanding Serratia marcescens colonies, we find that biofilm colony growth can increase with increasing substrate stiffness on purely elastic substrates, unlike what is found on traditional agar substrates. Using traction force microscopy, we find that biofilms exert transient stresses correlated over length scales much larger than a single bacterium. Our results are consistent with a model of biofilm development in which the interplay between osmotic pressure arising from the biofilm and the poroelastic response of the underlying substrate controls biofilm growth and morphology.


Author(s):  
Shuhua Peng ◽  
Shuying Wu ◽  
Yuyan Yu ◽  
Zhao Sha ◽  
Guang Li ◽  
...  

Direct deposition of thin metal films on highly elastic substrates is a major technique to fabricate flexible electronics such as wearable sensors, stretchable transistors, and deformable displays. However, these devices...


Author(s):  
Daheng Wang ◽  
Jinxia Huang ◽  
Zhiguang Guo ◽  
Weimin Liu

A mixed edible waxes coating on elastic substrates comprising sphere shaped carnuaba wax and flake shaped beeswax superhydrophibic particles shows durability and Stretching superhydrophobicity after abrasion and scratching, self-cleaning performance...


Langmuir ◽  
2020 ◽  
Vol 36 (49) ◽  
pp. 15010-15017
Author(s):  
Bailey C. Basso ◽  
Joshua B. Bostwick
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Szu-Yuan Chou ◽  
Chang-You Lin ◽  
Theresa Cassino ◽  
Li Wan ◽  
Philip R. LeDuc

Abstract Cell development and behavior are driven by internal genetic programming, but the external microenvironment is increasingly recognized as a significant factor in cell differentiation, migration, and in the case of cancer, metastatic progression. Yet it remains unclear how the microenvironment influences cell processes, especially when examining cell motility. One factor that affects cell motility is cell mechanics, which is known to be related to substrate stiffness. Examining how cells interact with each other in response to mechanically differential substrates would allow an increased understanding of their coordinated cell motility. In order to probe the effect of substrate stiffness on tumor related cells in greater detail, we created hard–soft–hard (HSH) polydimethylsiloxane (PDMS) substrates with alternating regions of different stiffness (200 and 800 kPa). We then cultured WI-38 fibroblasts and A549 epithelial cells to probe their motile response to the substrates. We found that when the 2 cell types were exposed simultaneously to the same substrate, fibroblasts moved at an increased speed over epithelial cells. Furthermore, the HSH substrate allowed us to physically guide and separate the different cell types based on their relative motile speed. We believe that this method and results will be important in a diversity of areas including mechanical microenvironment, cell motility, and cancer biology.


Sign in / Sign up

Export Citation Format

Share Document