Applied Mechanics
Latest Publications


TOTAL DOCUMENTS

79
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

0791847020

2004 ◽  
Author(s):  
W. Li ◽  
S. Qu ◽  
T. Siegmund ◽  
Y. Huang

Simulations of indentation delamination of ductile films on elastic substrates are performed. A cohesive zone model accounts for initiation and growth of interface delaminations and a strain gradient plasticity framework for the length scale dependence of plastic deformation. With the cohesive zone model and the strain gradient formulation two length scales are introduced in to the analysis.


Author(s):  
Eric M. Mockensturm ◽  
Nakhiah Goulbourne

Dielectric elastomers have received a great deal of attention recently for effectively transforming electrical energy to mechanical work. Their large strains and conformability make them enticing materials for many new types of actuators. Unfortunately, their non-linear material behavior and large deformations make actual devices difficult to model. However, the reason for this difficulty can also be used to design actuators that utilize these material and geometric non-linearities to obtain multiple stable equilibria. In this work, we investigate one of the simplest possible configurations, a spherical membrane, using a model that incorporates both mechanical and electrostatic pressure as well as inertial effects that become important when transitioning from one equilibrium to another.


2004 ◽  
Author(s):  
Ridha Baccouche ◽  
Andy Sherman ◽  
Susan Ward ◽  
David Wagner ◽  
Craig Miller ◽  
...  

An investigation of the service life aging and heat exposure effects on extruded aluminum alloy properties and structural crashworthiness has been conducted. This research, part of a broader program, consists of investigating five aluminum alloy extrusions each of which is subjected to two heat treatments. The aluminum extrusion investigated are 6063T6, 6061T6, 6260T6, 6014T6, and 7129T6. The two heat treatments are 177°C for 30 minutes and 200°C for 24 hours. The 200°C/24 hours treatment represents an upper limit thermal exposure i.e. components adjacent to exhaust pipes and manifolds. The 200°C heat treatment was applied in addition to the 177°C for 30 minutes. All specimens were subjected to the reference 177°C for 30 minutes treatment. These ten crash members were subjected to dynamic axial crashing at a target speed of 40 kph (25 mph). Force-time data was collected and responses were plotted for all tests. Force-displacement responses were then integrated for the crash energy management and mean axial crash load for each of the aluminum extruded crash members. Bar charts were then generated to describe the crash loads and energy management behaviors of the various aluminum alloys and associated heat treatments. Service life simulated heat exposure was found to effect the mean crash load and crash energy management of the aluminum structural crash members. The heat exposure effects on the crashworthiness of the extruded aluminum members ranged from a reduction of 10% to over 20% in the mean crash load and crash energy management with highest variation observed with the 6260T6 aluminum extrusion.


Author(s):  
Hemanth Porumamilla ◽  
Atul G. Kelkar

This study presents an H∞-based robust control design for an active automobile suspension system and compares its performance with a previously designed robust LQG controller and a well tuned PI controller from contemporary literature. The robustness of the controller designs is assessed by performing μ analysis of the closed loop system. The H∞ problem is formulated as a stacked nominal performance problem. The weighting functions on complementary sensitivity, sensitivity, and controller transfer functions are chosen to obtain desirable trade-off in performance and robustness. The main objective of the controller design is to provide ride comfort for passengers. The controller design presented in this paper is shown to provide robust stability as well as desirable robust performance which is an improvement over the previously designed robust LQG controller and a PI controller chosen from contemporary literature.


Author(s):  
F. Pellicano ◽  
G. Catellani ◽  
M. Amabili

The nonlinear dynamic response of an imperfect circular cylindrical shell under combined static and dynamic axial load is analyzed. A suitable expansion of the radial displacement, able to describe both buckling and dynamic behaviors is developed; the effect of geometric imperfections is accounted for. The response of the shell subjected to a sinusoidal axial excitation at its ends, giving rise to a parametric excitation, is considered. The effect of the imperfections on the critical value of the dynamic load, that causes the loss of stability of the system, is analyzed. Interesting nonlinear dynamic phenomena are observed: direct resonance with softening behavior and parametric instability with period doubling response.


2004 ◽  
Author(s):  
John Jy-An Wang ◽  
Ian G. Wright ◽  
Ken C. Liu ◽  
Roy L. Xu

A material configuration of central importance in microelectronics, optoelectronics, and thermal barrier coating technology is a thin film of one material deposited onto a substrate of a different material. Fabrication of such a structure inevitably gives rise to stress in the film due to lattice mismatch, differing coefficient of thermal expansion, chemical reactions, or other physical effects. Therefore, in general, the weakest link in this composite system often resides at the interface between the thin film and substrate. In order to make multi-layered electronic devices and structural composites with long-term reliability, the fracture behavior of the material interfaces must be known. Unfortunately, none of the state-of-the-art testing methods for evaluating interface fracture toughness is fully conformed to fracture mechanics theory, as is evident from the severe scatter in the existing data, and the procedure dependence in thin film/coating evaluation methods. This project is intended to address the problems associated with this deficiency and offers an innovative testing procedure for the determination of interface fracture toughness applicable to thin coating materials in general. Phase I of this new approach and the associated bi-material fracture mechanics development proposed for evaluating interface fracture toughness are described herein. The effort includes development of specimen configuration and related instrumentation set-up, testing procedures, and postmortem examination. A spiral notch torsion fracture toughness test (SNTT) system was utilized. The objectives of the testing procedure described are to enable the development of new coating materials by providing a reliable method for use in assessing their performance.


2004 ◽  
Author(s):  
Andre Cote ◽  
Ramin Sedaghati ◽  
Yvan Soucy

Force Limited Vibration (FLV) Testing developed at Jet Propulsion Laboratory offers many opportunities to decrease the overtesting problem associated with traditional vibration testing. Among the force limited vibration methods, the complex two degrees of freedom system (TDFS) appears to be the most complete and versatile model which gives reasonably conservative force limits, and does not require extrapolation of interface force data for similar mounting structures and test articles. However there are some limitations to the complex TDFS model. The model is well adapted for nicely separated modes but issues regarding the closely space modes have not been fully addressed in the literature. Also, the complex TDFS model is based on free boundary conditions for the mounting structure, which appear to be natural for many cases such as spacecraft mounted on a launch vehicle. However this is not necessarily true for some other cases such as an electronic component mounted on a spacecraft antenna, which requires fixed boundary conditions. The main objective of this paper is to give greater insights into the complex TDFS method and propose methodologies to overcome its limitations. It is shown that a simple approach can be used to assure conservative estimate of the force limits in situations regarding closely spaced modes. It is also demonstrated that although the complex TDFS method is not perfectly adapted to fixed boundary conditions of the mounting structure, given certain precautions, it still provides good estimates of the force limits.


2004 ◽  
Author(s):  
V. I. Babitsky ◽  
I. J. Sokolov

Analysis of strongly nonlinear systems revealed an existence of nonlinear modes of vibration with spatial and temporal concentration of energy. The modes can be realised, for example, through intensification of the vibration process by condensing the vibration into a sequence of collisions for impulsive action of the tools to the media being treated or can be as a result of some discontinuity (slackening of a contact, arrival of crack etc.) in the structure. The use of the nonlinear modes to develop useful mechanical work leads to necessity of excitation and control of resonance in ill-defined dynamical systems. This is due to the poorly predictable response of the media being treated. Excitation, stabilisation and control of a nonlinear mode at the top intensity in such systems is an engineering challenge and needs a new method of adaptive control for its realisation. Such a control technique was developed with the use of self-exciting mechatronic systems. The excitation of the nonlinear mode in such systems is a result of artificial instability of mechanical system conducted by positive electronic feedback. The instability is controlled by intelligent identification of the mode and active tracing of the optimal relationship between phase shifting and limitation in the feedback circuitry. This method of control is known as autoresonance. Applications of autoresonant control for development of the new machines are described.


Author(s):  
Matt Bravar ◽  
Brad Kinsey ◽  
Neil Krishnan

Tailor Welded Blanks offer several notable benefits including decreased part weight, reduced manufacturing costs, and improved dimensional consistency. However the reduced formability and other characteristics of the forming process associated with TWBs has limited the industrial utilization of this blank type. One concern with TWB forming is that weld line movement occurs which alters the final location of the various materials in the TWB combination. In this paper, an analytical model to predict the initial weld line placement necessary to satisfy the desired, final weld line location is presented. Good agreement between the model, experimental results, and numerical simulations with respect to weld line movement and initial placement was obtained for a symmetric, steel TWB case and a non-symmetric, Aluminum TWB case.


2004 ◽  
Author(s):  
Bo-Wun Huang ◽  
Jao-Hwa Kuang

The dynamic response of a cracked gas-bearing spindle system is studied in this work. A round Euler-Bernoulli beam is used to approximate the spindle system. The stiffness effect of the gas bearing spindle is considered as massless springs and the Hamilton principle is employed to derive the equation of motion for the spindle system. The effects of crack depth, rotation speed and air applied pressure on the dynamic characteristics of a rotating gas-bearing spindle system are studied.


Sign in / Sign up

Export Citation Format

Share Document