scholarly journals The formation of high-mass black holes in low-mass X-ray binaries

New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

1996 ◽  
Vol 165 ◽  
pp. 93-103
Author(s):  
Roger W. Romani

The presence of accreting black holes (BH) among the X-ray binaries has been recognized for many years. Traditionally, Cyg X-1 and the handful of other candidates have been thought of as cousins of the HMXB neutron star systems. Recent studies of the soft X-ray transients such as A 0620-00 have, however, shown that the dynamical evidence makes these low-mass systems very strong black-hole candidates. Further, analysis of the eventual end-states of various high-mass X-ray binaries suggest that some could end as observable BH-pulsar binaries, although the first such system is yet to be discovered.



2019 ◽  
Vol 492 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Xinwu Cao ◽  
Andrzej A Zdziarski

ABSTRACT The high-mass accreting binary Cyg X-3 is distinctly different from low-mass X-ray binaries (LMXBs) in having powerful radio and γ-ray emitting jets in its soft spectral state. However, the transition from the hard state to the soft one is first associated with quenching of the hard-state radio emission, as in LMXBs. The powerful soft-state jets in Cyg X-3 form, on average, ∼50 d later. We interpret the initial jet quenching as due to the hard-state vertical magnetic field quickly diffusing away in the thin disc extending to the innermost stable circular orbit in the soft state, or, if that field is produced in situ, also cessation of its generation. The subsequent formation of the powerful jets occurs due to advection of the magnetic field from the donor. We find this happens only above certain threshold accretion rate associated with appearance of magnetically driven outflows. The ∼50 d lag is of the order of the viscous time-scale in the outer disc, while the field advection is much faster. This process does not happen in LMXBs due to the magnetic fluxes available from their donors being lower than that for the wind accretion from the Wolf–Rayet donor of Cyg X-3. In our model, the vertical magnetic field in the hard state, required to form the jets both in Cyg X-3 and LMXBs, is formed in situ rather than advected from the donor. Our results provide a unified scenario of the soft and hard states in both Cyg X-3 and LMXBs.



2018 ◽  
Vol 14 (S346) ◽  
pp. 1-13
Author(s):  
Edward P. J. van den Heuvel

AbstractA summary is given of the present state of our knowledge of High-Mass X-ray Binaries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary.



2004 ◽  
Vol 194 ◽  
pp. 128-129
Author(s):  
Włodek Kluźniak

AbstractNon-linear oscillations in the accretion disk are favored as an explanation of high-frequency QPOs observed in the light curves of low-mass X-ray binaries containing neutron stars, black holes, or white dwarfs.



2018 ◽  
Vol 14 (S346) ◽  
pp. 426-432
Author(s):  
Y. Qin ◽  
T. Fragos ◽  
G. Meynet ◽  
P. Marchant ◽  
V. Kalogera ◽  
...  

AbstractThe six LIGO detections of merging black holes (BHs) allowed to infer slow spin values for the two pre-merging BHs. The three cases where the spins of the BHs can be determined in high-mass X-ray binaries (HMXBs) show that those BHs have high spin values. We discuss here scenarios explaining these differences in spin properties in these two classes of object.



2004 ◽  
Vol 194 ◽  
pp. 3-6
Author(s):  
Andrea H. Prestwich

AbstractChandra and XMM-Newton are revolutionizing our understanding of compact binaries in external galaxies, allowing us to study sources in detail in Local Group Galaxies and study populations in more distant systems. In M31 the X-ray luminosity function depends on the local stellar population in the sense that areas with active star formation have more high luminosity sources, and a higher overall source density (Kong. Di Stefano. Garcia, & Greiner 2003). This result is also true in galaxies outside the Local Group; starburst galaxies have flatter X-ray luminosity functions than do spiral galaxies which are in turn flatter than elliptical galaxies. These observational results suggest that the high end of the luminosity function in star forming regions is dominated by short-lived high mass X-ray binaries.In Chandra Cycle 2 we started a Large Project to survey a sample of 11 nearby (< 10Mpc) face-on spiral galaxies. We find that sources can be approximately classified on the basis of their X-ray color into low mass X-ray binaries, high mass X-ray binaries and supersoft sources. There is an especially interesting class of source that has X-ray colors softer (“redder”) than a typical low mass X-ray binary source, but not so extreme as supersoft sources. Most of these are probably X-ray bright supernova remnants, but some may be a new type of black hole accretor. Finally, when we construct a luminosity function of sources selecting only sources with low mass X-ray binary colors (removing soft sources) we find that there is a dip or break probably associated with the Eddington luminosity for a neutron star.



1999 ◽  
Vol 192 ◽  
pp. 100-103
Author(s):  
A. P. Cowley ◽  
P. C. Schmidtke ◽  
V. A. Taylor ◽  
T.K. McGrath ◽  
J. B. Hutchings ◽  
...  

In this study we compare the global populations of stellar X-ray sources in the LMC, SMC, and the Galaxy. After removing foreground stars and background AGN from the samples, the relative numbers of the various types of X-ray point sources within the LMC and SMC are similar, but differ markedly from those in the Galaxy. The Magellanic Clouds are rich in high-mass X-ray binaries (HMXB), especially those containing rapidly rotating Be stars. However, the LMC and SMC both lack the large number of low-mass X-ray binaries (LMXB) found in the Milky Way, which are known to represent a very old stellar population based on their kinematics, chemical composition, and spatial distribution.



1998 ◽  
Vol 11 (2) ◽  
pp. 775-778
Author(s):  
Simon Portegies Zwart ◽  
Frank Verbunt ◽  
Ene Ergma

We study the formation of low-mass X-ray binaries with a black hole as accreting object. The performed semi-analytic analysis reveals that the formation rate of black holes in low-mass X-ray binaries is about two orders of magnitude smaller than that of systems with a neutron star as accretor. This is contradicted by the six observed systems, which are all transients, which suggest that the majority of these systems has not been seen jet. The birthrate for both type of objects are expected to be similar (for reviews see Cowley 1992, Tanaka & Lewin 1995).



1996 ◽  
Vol 165 ◽  
pp. 289-300
Author(s):  
F. Nagase

There are about a dozen extensively investigated high-mass X-ray binaries (HMXBs), including LMC X-4, Cen X-3, 4U 1700-37, SMC X-1, Cyg X-1, and Vela X-1. Bhattacharya & Van den Heuvel (1991) compiled a list of “standard” HMXBs (see table 8 of their review article) and most of them, except for Cyg X-1 and 4U 1700-37, are accreting X-ray pulsars with an early-type or a Be star companion. Cyg X-3 was long considered to be a low-mass X-ray binary (LMXB). It was, however, recently revealed from infrared observations that the companion star has characteristics of a Wolf-Rayet star and it may be a fairly massive helium star (Van Kerkwijk et al. 1992; Van Kerkwijk 1993). I shall review here some recent progress in observational studies of the “standard” HMXBs and Cyg X-3.



Sign in / Sign up

Export Citation Format

Share Document