scholarly journals The black hole spin in coalescing binary black holes and high-mass X-ray binaries

2018 ◽  
Vol 14 (S346) ◽  
pp. 426-432
Author(s):  
Y. Qin ◽  
T. Fragos ◽  
G. Meynet ◽  
P. Marchant ◽  
V. Kalogera ◽  
...  

AbstractThe six LIGO detections of merging black holes (BHs) allowed to infer slow spin values for the two pre-merging BHs. The three cases where the spins of the BHs can be determined in high-mass X-ray binaries (HMXBs) show that those BHs have high spin values. We discuss here scenarios explaining these differences in spin properties in these two classes of object.

2018 ◽  
Vol 14 (S346) ◽  
pp. 1-13
Author(s):  
Edward P. J. van den Heuvel

AbstractA summary is given of the present state of our knowledge of High-Mass X-ray Binaries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary.


1996 ◽  
Vol 165 ◽  
pp. 93-103
Author(s):  
Roger W. Romani

The presence of accreting black holes (BH) among the X-ray binaries has been recognized for many years. Traditionally, Cyg X-1 and the handful of other candidates have been thought of as cousins of the HMXB neutron star systems. Recent studies of the soft X-ray transients such as A 0620-00 have, however, shown that the dynamical evidence makes these low-mass systems very strong black-hole candidates. Further, analysis of the eventual end-states of various high-mass X-ray binaries suggest that some could end as observable BH-pulsar binaries, although the first such system is yet to be discovered.


2019 ◽  
Vol 870 (2) ◽  
pp. L18 ◽  
Author(s):  
Ying Qin ◽  
Pablo Marchant ◽  
Tassos Fragos ◽  
Georges Meynet ◽  
Vicky Kalogera

New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2019 ◽  
Vol 628 ◽  
pp. A19 ◽  
Author(s):  
M. Quast ◽  
N. Langer ◽  
T. M. Tauris

Context. The origin and number of the Galactic supergiant X-ray binaries is currently not well understood. They consist of an evolved massive star and a neutron star or black-hole companion. X-rays are thought to be generated from the accretion of wind material donated by the supergiant, while mass transfer due to Roche-lobe overflow is mostly disregarded because the high mass ratios of these systems are thought to render this process unstable. Aims. We investigate how the proximity of supergiant donor stars to the Eddington limit, and their advanced evolutionary stage, may influence the evolution of massive and ultra-luminous X-ray binaries with supergiant donor stars (SGXBs and ULXs). Methods. We constructed models of massive stars with different internal hydrogen and helium gradients (H/He gradients) and different hydrogen-rich envelope masses, and exposed them to slow mass-loss to probe the response of the stellar radius. In addition, we computed the corresponding Roche-lobe overflow mass-transfer evolution with our detailed binary stellar evolution code, approximating the compact objects as point masses. Results. We find that a H/He gradient in the layers beneath the surface, as it is likely present in the well-studied donor stars of observed SGBXs, can enable mass transfer in SGXBs on a nuclear timescale with a black-hole or a neutron star accretor, even for mass ratios in excess of 20. In our binary evolution models, the donor stars rapidly decrease their thermal equilibrium radius and can therefore cope with the inevitably strong orbital contraction imposed by the high mass ratio. We find that the orbital period derivatives of our models agree well with empirical values. We argue that the SGXB phase may be preceded by a common-envelope evolution. The envelope inflation near the Eddington limit means that this mechanism more likely occurs at high metallicity. Conclusion. Our results open a new perspective for understanding that SGBXs are numerous in our Galaxy and are almost completely absent in the Small Magellanic Cloud. Our results may also offer a way to find more ULX systems, to detect mass transfer on nuclear timescales in ULX systems even with neutron star accretors, and shed new light on the origin of the strong B-field in these neutron stars.


1998 ◽  
Vol 11 (2) ◽  
pp. 775-778
Author(s):  
Simon Portegies Zwart ◽  
Frank Verbunt ◽  
Ene Ergma

We study the formation of low-mass X-ray binaries with a black hole as accreting object. The performed semi-analytic analysis reveals that the formation rate of black holes in low-mass X-ray binaries is about two orders of magnitude smaller than that of systems with a neutron star as accretor. This is contradicted by the six observed systems, which are all transients, which suggest that the majority of these systems has not been seen jet. The birthrate for both type of objects are expected to be similar (for reviews see Cowley 1992, Tanaka & Lewin 1995).


2006 ◽  
Vol 2 (S238) ◽  
pp. 3-12 ◽  
Author(s):  
Jorge Casares

AbstractRadial velocity studies of X-ray binaries provide the most solid evidence for the existence of stellar-mass black holes. We currently have 20 confirmed cases, with dynamical masses in excess of 3 M⊙. Accurate masses have been obtained for a subset of systems which gives us a hint at the mass spectrum of the black hole population. This review summarizes the history of black hole discoveries and presents the latest results in the field.


Author(s):  
Christopher S. Reynolds

The spin of a black hole is an important quantity to study, providing a window into the processes by which a black hole was born and grew. Furthermore, spin can be a potent energy source for powering relativistic jets and energetic particle acceleration. In this review, I describe the techniques currently used to detect and measure the spins of black holes. It is shown that: ▪ Two well-understood techniques, X-ray reflection spectroscopy and thermal continuum fitting, can be used to measure the spins of black holes that are accreting at moderate rates. There is a rich set of other electromagnetic techniques allowing us to extend spin measurements to lower accretion rates. ▪ Many accreting supermassive black holes are found to be rapidly spinning, although a population of more slowly spinning black holes emerges at masses above M > 3 × 107 M⊙ expected from recent structure formation models. ▪ Many accreting stellar-mass black holes in X-ray binary systems are rapidly spinning and must have been born in this state. ▪ The advent of gravitational wave astronomy has enabled the detection of spin effects in merging binary black holes. Most of the premerger black holes are found to be slowly spinning, a notable exception being an object that may itself be a merger product. ▪ The stark difference in spins between the black hole X-ray binary and the binary black hole populations shows that there is a diversity of formation mechanisms. Given the array of new electromagnetic and gravitational wave capabilities currently being planned, the future of black hole spin studies is bright. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dipo Mahto ◽  
Md Shams Nadeem ◽  
Mahendra Ram ◽  
Kumari Vineeta

The present research paper derives a formula for gravitational force acting between the black hole and light particle passing near the radius of event horizon of black holes and calculates also their values of different test black holes existing in only X-ray binaries (XRBs).


2020 ◽  
Vol 636 ◽  
pp. A99 ◽  
Author(s):  
D. Vanbeveren ◽  
N. Mennekens ◽  
E. P. J. van den Heuvel ◽  
J. Van Bever

Context. Theoretical population number studies of binaries with at least one black hole (BH) component obviously depend on whether or not BHs receive a (natal) kick during their formation. Aims. Several observational facts seem to indicate that BHs do indeed receive a kick during their formation. In the present paper, we discuss additional evidence of this. Methods. The progenitors of wind-fed high-mass X-ray binaries (HMXB) with a BH component (BH HMXB) are WR+OB binaries where the Wolf–Rayet (WR) star will finally collapse and form the BH. Starting from the observed population of WR+OB binaries in the solar neighborhood, we predict the population of wind-fed BH HMXBs as a function of the BH-natal kick. Results. The simulations reveal that when WR stars collapse into a BH with a zero or low kick, we should expect 100 or more wind-fed BH HMXBs in the solar neighborhood, whereas only one is observed (Cyg X-1). We consider this as evidence that either WR components in binaries end their life as a neutron star or that they collapse into BHs, both accompanied by a supernova explosion imparting significant (natal) kicks.


Sign in / Sign up

Export Citation Format

Share Document