Structural and vibrational characterization of the mono and dilithiated species derived from phenylacetonitrile in THF by infrared and Raman spectroscopy and density functional theory calculations

Author(s):  
Jacques Corset ◽  
Martine Castellà-Ventura ◽  
Françoise Froment ◽  
Tekla Strzalko ◽  
Lya Wartski
RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34493-34500
Author(s):  
Mei-Chun Huang ◽  
Wei-Hao Chen ◽  
Chen-Wei Huang ◽  
Kuei-Yen Huang ◽  
Jia-Cherng Horng ◽  
...  

The low-wavenumber Raman spectra in combination with theoretical calculations via solid-state density functional theory (DFT)-D3 are displayed. The vibrational structures and interaction with solvent of poly-l-proline and the oligoproline P12 series are identified.


2003 ◽  
Vol 57 (8) ◽  
pp. 970-976 ◽  
Author(s):  
M. Bolboaca ◽  
T. Stey ◽  
A. Murso ◽  
D. Stalke ◽  
W. Kiefer

Fourier transform (FT) Raman and infrared spectroscopy in combination with density functional theory calculations have been applied to the vibrational characterization of the dimeric zinc diphenylphosphanyl(trimethylsilyl)amide complex [(Me3Si)2NZnPh2PNSiMe3]2 and the ortho-metallated species [Li( o-C6H4PPh2NSiMe3)]2·Et2O in relation to their parent starting materials diphenylphosphanyl (trimethylsilyl)amine Ph2P–N(H)SiMe3 and iminophosphorane Ph3P=NSiMe3. The spectroscopic changes evidenced in the spectra were correlated with the structural parameters in order to provide insight as to what extent the P–N bond is affected by the coordination to the metal center. The employment of density functional theory (DFT) calculations in addition to these spectroscopic methods offers the possibility of predicting whether the Lewis-basic imido nitrogen atom is involved in coordination not only in the solid state, but also in the gas phase.


Sign in / Sign up

Export Citation Format

Share Document