High capacity silicon/carbon composite anode materials for lithium ion batteries

2003 ◽  
Vol 5 (2) ◽  
pp. 165-168 ◽  
Author(s):  
Z.S. Wen ◽  
J. Yang ◽  
B.F. Wang ◽  
K. Wang ◽  
Y. Liu
2009 ◽  
Vol 189 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Zhaojun Luo ◽  
Dongdong Fan ◽  
Xianlong Liu ◽  
Huanyu Mao ◽  
Caifang Yao ◽  
...  

2018 ◽  
Vol 10 (29) ◽  
pp. 24549-24553 ◽  
Author(s):  
Seong Heon Kim ◽  
Yong Su Kim ◽  
Woon Joong Baek ◽  
Sung Heo ◽  
Dong-Jin Yun ◽  
...  

ChemSusChem ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1923-1946 ◽  
Author(s):  
Joseph Nzabahimana ◽  
Zhifang Liu ◽  
Songtao Guo ◽  
Libin Wang ◽  
Xianluo Hu

2019 ◽  
Vol 2 (1) ◽  
pp. 149-198 ◽  
Author(s):  
Fei Dou ◽  
Liyi Shi ◽  
Guorong Chen ◽  
Dengsong Zhang

2016 ◽  
Vol 168 ◽  
pp. 138-142 ◽  
Author(s):  
Yu Zhou ◽  
Huajun Guo ◽  
Yong Yang ◽  
Zhixing Wang ◽  
Xinhai Li ◽  
...  

2018 ◽  
Vol 5 (6) ◽  
pp. 172370 ◽  
Author(s):  
Xuyan Liu ◽  
Xinjie Zhu ◽  
Deng Pan

Lithium-ion batteries are widely used in various industries, such as portable electronic devices, mobile phones, new energy car batteries, etc., and show great potential for more demanding applications like electric vehicles. Among advanced anode materials applied to lithium-ion batteries, silicon–carbon anodes have been explored extensively due to their high capacity, good operation potential, environmental friendliness and high abundance. Silicon–carbon anodes have demonstrated great potential as an anode material for lithium-ion batteries because they have perfectly improved the problems that existed in silicon anodes, such as the particle pulverization, shedding and failures of electrochemical performance during lithiation and delithiation. However, there are still some problems, such as low first discharge efficiency, poor conductivity and poor cycling performance, which need to be improved. This paper mainly presents some methods for solving the existing problems of silicon–carbon anode materials through different perspectives.


2018 ◽  
Vol 27 (4) ◽  
pp. 1067-1090 ◽  
Author(s):  
Xiaohui Shen ◽  
Zhanyuan Tian ◽  
Ruijuan Fan ◽  
Le Shao ◽  
Dapeng Zhang ◽  
...  

2017 ◽  
Vol 4 (12) ◽  
pp. 1996-2004 ◽  
Author(s):  
Yankai Li ◽  
Zhi Long ◽  
Pengyuan Xu ◽  
Yang Sun ◽  
Kai Song ◽  
...  

A novel silicon–carbon composite with a 3D pore-nest structure denoted as Si@SiOx/CNTs@C was prepared and studied, and the capacity of a Si@SiOx/CNTs@C composite anode can be maintained at above 1740 mA h g−1 at a current density of 0.42 A g−1 after 700 cycles.


Sign in / Sign up

Export Citation Format

Share Document