A 3D pore-nest structured silicon–carbon composite as an anode material for high performance lithium-ion batteries

2017 ◽  
Vol 4 (12) ◽  
pp. 1996-2004 ◽  
Author(s):  
Yankai Li ◽  
Zhi Long ◽  
Pengyuan Xu ◽  
Yang Sun ◽  
Kai Song ◽  
...  

A novel silicon–carbon composite with a 3D pore-nest structure denoted as Si@SiOx/CNTs@C was prepared and studied, and the capacity of a Si@SiOx/CNTs@C composite anode can be maintained at above 1740 mA h g−1 at a current density of 0.42 A g−1 after 700 cycles.

2009 ◽  
Vol 189 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Zhaojun Luo ◽  
Dongdong Fan ◽  
Xianlong Liu ◽  
Huanyu Mao ◽  
Caifang Yao ◽  
...  

RSC Advances ◽  
2012 ◽  
Vol 2 (13) ◽  
pp. 5701 ◽  
Author(s):  
Xuejiao Feng ◽  
Jun Yang ◽  
Pengfei Gao ◽  
Jiulin Wang ◽  
Yanna Nuli

2020 ◽  
Vol 49 (46) ◽  
pp. 17026-17032
Author(s):  
Miao Wang ◽  
Guo-Ming Weng ◽  
Ghulam Yasin ◽  
Mohan Kumar ◽  
Wei Zhao

Tin phosphide (SnxPy) is a promising anode material for lithium-ion batteries (LIBs).


2016 ◽  
Vol 4 (6) ◽  
pp. 2082-2088 ◽  
Author(s):  
Xuemei Tang ◽  
Gang Sui ◽  
Qing Cai ◽  
Weihong Zhong ◽  
Xiaoping Yang

A novel MnO/carbon composite anode material with multi-modal pore structure was prepared, which exhibited superior electrochemical performance.


Nano Express ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 010021
Author(s):  
Yangzhi Bai ◽  
Xinlong Cao ◽  
Zhanyuan Tian ◽  
Shifeng Yang ◽  
Guolin Cao

2010 ◽  
Vol 195 (6) ◽  
pp. 1720-1725 ◽  
Author(s):  
Q. Si ◽  
K. Hanai ◽  
T. Ichikawa ◽  
A. Hirano ◽  
N. Imanishi ◽  
...  

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040011
Author(s):  
Bowen Dong ◽  
Bingbing Deng ◽  
Yangai Liu

Silicon, an anode material for lithium ion batteries, has the highest theoretical specific capacity ([Formula: see text] mAh/g). The actual lithium storage capacity of [Formula: see text] mAh/g is about 10 times that of the graphite anode materials class. This study involves magnesium heat reduction of the SiO2 preparation of silicon carbon composites. The Si/SiC composite shows a high initial specific capacity of 1406.7 mAh/g with a current density of 0.1 A/g. The morphology and pore size inherited from the SiO2 aerogel counteracts the volume expansion during the lithiation/delithiation process. This paper provides an articulate methodology for designing silicon anode material for high-performance rechargeable lithium-ion batteries.


2016 ◽  
Vol 334 ◽  
pp. 128-136 ◽  
Author(s):  
Hiesang Sohn ◽  
Dong Hyeon Kim ◽  
Ran Yi ◽  
Duihai Tang ◽  
Sang-Eui Lee ◽  
...  

2020 ◽  
Vol 4 (9) ◽  
pp. 4780-4788 ◽  
Author(s):  
Qiang Ma ◽  
Jiakang Qu ◽  
Xiang Chen ◽  
Zhuqing Zhao ◽  
Yan Zhao ◽  
...  

Low-cost feedstocks and rationally designed structures are the keys to determining the lithium-storage performance and practical applications of Si-based anodes for lithium-ion batteries (LIBs).


Sign in / Sign up

Export Citation Format

Share Document