AL-001 Effective prevention of multiple pregnancy rate by elective single embryo transfer

2008 ◽  
Vol 16 ◽  
pp. S-28
Author(s):  
R Komaba ◽  
M Maeda ◽  
N Sugawara ◽  
Y Araki
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Syuichi Ooki

The purpose of the present study was to examine the effect of single embryo transfer (SET) in assisted reproductive technology (ART) on the reduction of the multiple pregnancy rate. We also estimated the monozygotic (MZ) twinning rates according to the SET diffusion indirectly. A reverse sigmoid curve was assumed and examined using nationwide data of SET from 2007 to 2009 in Japan. The multiple pregnancy rate decreased almost linearly where the SET pregnancy rate was between about 40% and 80% of regression approximation. The linear approximation overestimated multiple pregnancy rates in an early period and underestimated multiple pregnancy rates in the final period. The multiple pregnancy rate seemed to be influenced by the improvement of the total pregnancy rate of ART in the early period and by the MZ twinning after SET in the final period. The estimated MZ twinning rate after SET was around 2%.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Wenjie Wang ◽  
Jiali Cai ◽  
Lanlan Liu ◽  
Yingpei Xu ◽  
Zhenfang Liu ◽  
...  

Abstract Background While single embryo transfer (SET) is widely advocated, double embryo transfer (DET) remains preferable in clinical practice to improve IVF success rate, especially in poor prognosis patients with only poor quality embryos (PQEs) available in addition to one or no good quality embryos (GQEs). Furthermore, previous studies suggest PQE might adversely affect the implantation of a GQE when transferred together. This study aims to evaluate the effect of transferring an additional PQE with a GQE on the outcomes in poor prognosis patients. Methods A total of 5037 frozen-thawed blastocyst transfer (FBT) cycles between January 2012 and May 2019 were included. Propensity score matching was applied to control for potential confounders, and we used generalized estimating equations (GEE) models to identify the association between the effect of an additional PQE and the outcomes. Results Overall, transferring a PQE with GQE (Group GP) achieved significantly higher pregnancy rate (PR), live birth rate (LBR) and multiple pregnancy rate (MPR) than GQE only (group G). The addition of a PQE increased LBR in patients aged 35 and over and in patients who received over 3 cycles of embryo transfer (ET) (48.1% vs 27.2%, OR:2.56, 95% CI: 1.3–5.03 and 46.6% vs 35.4%, OR:1.6, 95% CI: 1.09–2.35), but not in women under 35 and in women who received less than 3 cycles of ET (48.7% vs 43.9%, OR:1.22, 95% CI: 0.93–1.59 and 48.3% vs 41.4%, OR:1.33, 95% CI: 0.96–1.85). Group GP resulted in significantly higher MPR than group G irrespective of age and the number of previous IVF cycles. Conclusions An additional PQE does not negatively affect the implantation potential of the co-transferred GQE. Nevertheless, the addition of a PQE contributes to both live birth and multiple birth in poor prognosis patients. Physicians should still balance the benefits and risks of DET.


Sign in / Sign up

Export Citation Format

Share Document