Bond-Graph-Based Computational Approach to Hybrid System Dynamics

1997 ◽  
Vol 30 (27) ◽  
pp. 167-172
Author(s):  
O. Pastravanu
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Paul Kröger ◽  
Martin Fränzle

Abstract Hybrid system dynamics arises when discrete actions meet continuous behaviour due to physical processes and continuous control. A natural domain of such systems are emerging smart technologies which add elements of intelligence, co-operation, and adaptivity to physical entities. Various flavours of hybrid automata have been suggested as a means to formally analyse dynamics of such systems. In this article, we present our current work on a revised formal model that is able to represent state tracking and estimation in hybrid systems and thereby enhancing precision of verification verdicts.


2000 ◽  
Author(s):  
Robin C. Redfield

Abstract Models of a small-scale water rocket are developed as an example of open system modeling by both the bond graph approach and a more classical method. One goal of the development is to determine the benefits of the bond graph approach into affording insight into the system dynamics. Both modeling approaches yield equivalent differential equations as they should, while the bond graph approach yields significantly more insight into the system dynamics. If a modeling goal is to simply find the system equations and predict behavior, the classical approach may be more expeditious. If insight and ease of model modification are desired, the bond graph technique is probably the better choice. But then you have to learn it!


2021 ◽  
Author(s):  
Hailie Suk ◽  
John Hall

Abstract Access to resources can contribute to social progress in extremely impoverished communities. The introduction of cyber-physical systems for electricity, water, and irrigation facilitates greater fulfillment of needs. Yet, the availability of resources may be inconsistent or lacking. The social dynamics of the community can provide insight into how the available resources support well-being. Thus, the cyber-physical system requires the addition of a social consideration to become cyber-physical-social systems. However, the social considerations typically include qualitative parameters. This prompts the need for integrating qualitative and quantitative information. In this paper, we present a method for mathematically representing qualitative and quantitative relationships. This is achieved by connecting Bond Graph Modeling and System Dynamics. The Bond Graph model is used to mathematically represent relationships between qualitative and quantitative elements. These relationships are used in the System Dynamics analysis. The method is anchored in expanding cyber-physical to cyber-physical-social systems through incorporating both qualitative and quantitative information in the systems analysis. The mathematical connectivity of qualitative and quantitative information is a key feature of this approach. A test problem in resource allocation is used to demonstrate the function and flexibility of the method. This is anchored in connecting qualitative and quantitative information in the analysis.


Sign in / Sign up

Export Citation Format

Share Document