Anterior-Posterior Polarization and Mesoderm Inducing Factors in the Pregastrula Mouse Embryo: Comparison to Chick and Frog Embryos

Author(s):  
Rosemary F. Bachvarova
1989 ◽  
Vol 27 ◽  
pp. 53
Author(s):  
J.B.A. Green ◽  
G. Howes ◽  
M. Yaqoob ◽  
J. Cooke ◽  
J.C. Smith

Development ◽  
1989 ◽  
Vol 107 (2) ◽  
pp. 229-241 ◽  
Author(s):  
J. Cooke

Certain proteins from ‘growth factor’ families can initiate mesodermal development in animal cap cells of the amphibian blastula. Cells that are in early stages of their response to one such factor, XTC-MIF (Smith et al. 1988), initiate the formation of a new axial body plan when grafted to the ventral marginal zone of a similarly aged host embryo (Cooke et al. 1987). This replicates the natural control of this phase of development by the dorsal blastoporal lip when similarly grafted; the classical ‘organiser’ phenomenon. I have explored systematically the effect, upon the outcome of this pattern formation using defined inducing factors, of varying graft size, XTC-MIF concentration to which graft cells were exposed, length of exposure before grafting, and host age. The ‘mesodermal organiser’ status, evoked by the factor, appears to be stable, and the variables most influencing the degree of completeness and orderliness of second patterns are graft size and factor concentration. Inappropriately large grafts are not effective. A Xenopus basic fibroblast growth factor homologue, present in the embryo and known to be a strong inducer but of mesoderm with a different character from that induced by XTC-MIF, produced no episode of pattern formation at all when tested in the procedure described in this paper. Organiser status of grafts that have been exposed to mixtures of the two factors is set entirely by the supplied XTC-MIF concentration. Lineage labelling of these grafts, and of classical dorsal lip grafts, reveals closely similar though not identical patterns of contribution to the new structure within the host. Implications of the results for the normal mechanism of body pattern formation are discussed.


1996 ◽  
Vol 55 (1) ◽  
pp. 3-18 ◽  
Author(s):  
Jos Joore ◽  
Claudia Fasciana ◽  
Johanna E. Speksnijder ◽  
Wiebe Kruijer ◽  
Olivier H.J. Destrée ◽  
...  

Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2225-2234 ◽  
Author(s):  
M. Tada ◽  
M.A. O'Reilly ◽  
J.C. Smith

Analysis of gene function in Xenopus development frequently involves over-expression experiments, in which RNA encoding the protein of interest is microinjected into the early embryo. By taking advantage of the fate map of Xenopus, it is possible to direct expression of the protein to particular regions of the embryo, but it has not been possible to exert control over the timing of expression; the protein is translated immediately after injection. To overcome this problem in our analysis of the role of Brachyury in Xenopus development, we have, like Kolm and Sive (1995; Dev. Biol. 171, 267–272), explored the use of hormone-inducible constructs. Animal pole regions derived from embryos expressing a fusion protein (Xbra-GR) in which the Xbra open reading frame is fused to the ligand-binding domain of the human glucocorticoid receptor develop as atypical epidermis, presumably because Xbra is sequestered by the heat-shock apparatus of the cell. Addition of dexamethasone, which binds to the glucocorticoid receptor and releases Xbra, causes formation of mesoderm. We have used this approach to investigate the competence of animal pole explants to respond to Xbra-GR, and have found that competence persists until late gastrula stages, even though by this time animal caps have lost the ability to respond to mesoderm-inducing factors such as activin and FGF. In a second series of experiments, we demonstrate that Xbra is capable of inducing its own expression, but that this auto-induction requires intercellular signals and FGF signalling. Finally, we suggest that the use of inducible constructs may assist in the search for target genes of Brachyury.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4499-4511 ◽  
Author(s):  
A. Perea-Gomez ◽  
W. Shawlot ◽  
H. Sasaki ◽  
R.R. Behringer ◽  
S. Ang

Recent embryological and genetic experiments have suggested that the anterior visceral endoderm and the anterior primitive streak of the early mouse gastrula function as head- and trunk-organising centers, respectively. Here, we report that HNF3beta and Lim1 are coexpressed in both organising centers suggesting synergistic roles of these genes in regulating organiser functions and hence axis development in the mouse embryo. To investigate this possibility, we generated compound HNF3beta and Lim1 mutant embryos. An enlarged primitive streak and a lack of axis formation were observed in HNF3beta (−)(/)(−);Lim1(−)(/)(−), but not in single homozygous mutant embryos. Chimera experiments indicate that the primary defect in these double homozygous mutants is due to loss of activity of HNF3beta and Lim1 in the visceral endoderm. Altogether, these data provide evidence that these genes function synergistically to regulate organiser activity of the anterior visceral endoderm. Moreover, HNF3beta (−)(/)(−);Lim1(−)(/)(−) mutant embryos also exhibit defects in mesoderm patterning that are likely due to lack of specification of anterior primitive streak cells.


Sign in / Sign up

Export Citation Format

Share Document