24 Familial hypertrophic cardiomyopathy: the effects of point mutations in the cardiac myosin heavy chain on calcium-sensitivity

2004 ◽  
Vol 3 (1) ◽  
pp. 3
Author(s):  
S KIRSCHNER
2002 ◽  
Vol 49 (4) ◽  
pp. 789-804 ◽  
Author(s):  
Maria Jolanta Redowicz

This article summarizes current knowledge on the genetics and possible molecular mechanisms of Human pathologies resulted from mutations within the genes encoding several myosin isoforms. Mutations within the genes encoding some myosin isoforms have been found to be responsible for blindness (myosins III and VIIA), deafness (myosins I, IIA, IIIA, VI, VIIA and XV) and familial hypertrophic cardiomyopathy (beta cardiac myosin heavy chain and both the regulatory and essential light chains). Myosin III localizes predominantly to photoreceptor cells and is proved to be engaged in the vision process in Drosophila. In the inner ear, myosin I is postulated to play a role as an adaptive motor in the tip links of stereocilia of hair cells, myosin IIA seems to be responsible for stabilizing the contacts between adjacent inner ear hair cells, myosin VI plays a role as an intracellular motor transporting membrane structures within the hair cells while myosin VIIA most probably participates in forming links between neighbouring stereocilia and myosin XV probably stabilizes the stereocilia structure. About 30% of patients with familial hypertrophic cardiomyopathy have mutations within the genes encoding the beta cardiac myosin heavy chain and both light chains that are grouped within the regions of myosin head crucial for its functions. The alterations lead to the destabilization of sarcomeres and to a decrease of the myosin ATPase activity and its ability to move actin filaments.


1997 ◽  
Vol 137 (1) ◽  
pp. 131-140 ◽  
Author(s):  
K. David Becker ◽  
Kim R. Gottshall ◽  
Reed Hickey ◽  
Jean-Claude Perriard ◽  
Kenneth R. Chien

Hypertrophic cardiomyopathy is a human heart disease characterized by increased ventricular mass, focal areas of fibrosis, myocyte, and myofibrillar disorganization. This genetically dominant disease can be caused by mutations in any one of several contractile proteins, including β cardiac myosin heavy chain (βMHC). To determine whether point mutations in human βMHC have direct effects on interfering with filament assembly and sarcomeric structure, full-length wild-type and mutant human βMHC cDNAs were cloned and expressed in primary cultures of neonatal rat ventricular cardiomyocytes (NRC) under conditions that promote myofibrillogenesis. A lysine to arginine change at amino acid 184 in the consensus ATP binding sequence of human βMHC resulted in abnormal subcellular localization and disrupted both thick and thin filament structure in transfected NRC. Diffuse βMHC K184R protein appeared to colocalize with actin throughout the myocyte, suggesting a tight interaction of these two proteins. Human βMHC with S472V mutation assembled normally into thick filaments and did not affect sarcomeric structure. Two mutant myosins previously described as causing human hypertrophic cardiomyopathy, R249Q and R403Q, were competent to assemble into thick filaments producing myofibrils with well defined I bands, A bands, and H zones. Coexpression and detection of wild-type βMHC and either R249Q or R403Q proteins in the same myocyte showed these proteins are equally able to assemble into the sarcomere and provided no discernible differences in subcellular localization. Thus, human βMHC R249Q and R403Q mutant proteins were readily incorporated into NRC sarcomeres and did not disrupt myofilament formation. This study indicates that the phenotype of myofibrillar disarray seen in HCM patients which harbor either of these two mutations may not be directly due to the failure of the mutant myosin heavy chain protein to assemble and form normal sarcomeres, but may rather be a secondary effect possibly resulting from the chronic stress of decreased βMHC function.


Cell ◽  
1990 ◽  
Vol 62 (5) ◽  
pp. 999-1006 ◽  
Author(s):  
Anja A.T. Geisterfer-Lowrance ◽  
Susan Kass ◽  
Gary Tanigawa ◽  
Hans-Peter Vosberg ◽  
William McKenna ◽  
...  

10.1038/6549 ◽  
1999 ◽  
Vol 5 (3) ◽  
pp. 327-330 ◽  
Author(s):  
Dimitrios Georgakopoulos ◽  
Michael E. Christe ◽  
Michael Giewat ◽  
Christine M. Seidman ◽  
J.G. Seidman ◽  
...  

Cell ◽  
1990 ◽  
Vol 62 (5) ◽  
pp. 991-998 ◽  
Author(s):  
Gary Tanigawa ◽  
John A. Jarcho ◽  
Susan Kass ◽  
Scott D. Solomon ◽  
Hans-Peter Vosberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document