myosin isoforms
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 26)

H-INDEX

43
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Itallia V. Pacentine ◽  
Peter G. Barr-Gillespie

AbstractATP-utilizing enzymes play key roles in hair bundles, the mechanically sensitive organelles of sensory hair cells in the inner ear. We used a fluorescent ATP analog, EDA-ATP-Cy3 (Cy3-ATP), to label ATP-binding proteins in two different preparations of unfixed hair-cell stereocilia of the mouse. In the first preparation, we lightly permeabilized dissected cochleas, then labeled them with Cy3-ATP. Hair cells and their stereocilia remained intact, and stereocilia tips in rows 1 and 2 were labeled particularly strongly with Cy3-ATP. In many cases, vanadate (Vi) traps nucleotides at the active site of myosin isoforms and presents nucleotide dissociation. Co-application with Vi enhanced the tip labeling, which is consistent with myosin isoforms being responsible. By contrast, the actin polymerization inhibitors latrunculin A and cytochalasin D had no effect, suggesting that actin turnover at stereocilia tips was not involved. Cy3-ATP labeling was substantially reduced—but did not disappear altogether—in mutant cochleas lacking MYO15A; by contrast, labeling remained robust in cochleas lacking MYO7A. In the second preparation, used to quantify Cy3-ATP labeling, we labeled vestibular stereocilia that had been adsorbed to glass, which demonstrated that tip labeling was higher in longer stereocilia. We found that tip signal was reduced by ~ 50% in Myo15ash2/sh2 stereocilia as compared to Myo15ash2/+stereocilia. These results suggest that MYO15A accounts for a substantial fraction of the Cy3-ATP tip labeling in vestibular hair cells, and so this novel preparation could be utilized to examine the control of MYO15A ATPase activity in situ.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1221
Author(s):  
Matthew H. Doran ◽  
William Lehman

Actin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a monomeric G-actin to a filamentous F-actin form plays a critical role in a variety of cellular processes, including control of cell shape and cell motility. Once polymerized from G-actin, F-actin forms the central core of muscle-thin filaments and acts as molecular tracks for myosin-based motor activity. The ATP-dependent cross-bridge cycle of myosin attachment and detachment drives the sliding of myosin thick filaments past thin filaments in muscle and the translocation of cargo in somatic cells. The variation in actin function is dependent on the variation in muscle and non-muscle myosin isoform behavior as well as interactions with a plethora of additional actin-binding proteins. Extensive work has been devoted to defining the kinetics of actin-based force generation powered by the ATPase activity of myosin. In addition, over the past decade, cryo-electron microscopy has revealed the atomic-evel details of the binding of myosin isoforms on the F-actin surface. Most accounts of the structural interactions between myosin and actin are described from the perspective of the myosin molecule. Here, we discuss myosin-binding to actin as viewed from the actin surface. We then describe conserved structural features of actin required for the binding of all or most myosin isoforms while also noting specific interactions unique to myosin isoforms.


Author(s):  
Jonathan Walklate ◽  
Cecilia Ferrantini ◽  
Chloe A. Johnson ◽  
Chiara Tesi ◽  
Corrado Poggesi ◽  
...  

AbstractHuman atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly β-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & β-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.


2021 ◽  
Author(s):  
Itallia V. Pacentine ◽  
Peter G. Barr-Gillespie

Abstract ATP-utilizing enzymes play key roles in hair bundles, the mechanically sensitive organelles of sensory hair cells in the inner ear. We used a fluorescent ATP analog, EDA-ATP-Cy3 (Cy3-ATP), to label ATP-binding proteins in two different preparations of unfixed hair-cell stereocilia. In the first preparation, we lightly permeabilized dissected cochleas, then labeled them with Cy3-ATP. Hair cells and their stereocilia remained intact, and stereocilia tips in rows 1 and 2 were labeled particularly strongly with Cy3-ATP. Co-application with vanadate (VO43-) enhanced the tip labeling, which is consistent with myosin isoforms being responsible; by contrast, the actin polymerization inhibitors latrunculin A and cytochalasin D had no effect, suggesting that actin turnover at stereocilia tips was not involved. Cy3-ATP labeling was substantially reduced—but did not disappear altogether—in mutant cochleas lacking MYO15A; by contrast, labeling remained robust in cochleas lacking MYO7A. In the second preparation, used to quantify Cy3-ATP labeling, we labeled vestibular stereocilia that had been adsorbed to glass, which demonstrated that tip labeling was higher in longer stereocilia. We found that tip signal was reduced by ~50% in Myo15ash2/sh2 stereocilia as compared to Myo15ash2/+ stereocilia of the same length range. These results suggest that MYO15A accounts for a substantial fraction of the Cy3-ATP tip labeling in vestibular hair cells, and so this novel preparation could be utilized to examine the control of MYO15A ATPase activity in situ.


2021 ◽  
Vol 153 (7) ◽  
Author(s):  
Sandra Pütz ◽  
Lisa Sophie Barthel ◽  
Marina Frohn ◽  
Doris Metzler ◽  
Mohammed Barham ◽  
...  

The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD's in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1−/− compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1−/− than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael D. Ward ◽  
Maxwell I. Zimmerman ◽  
Artur Meller ◽  
Moses Chung ◽  
S. J. Swamidass ◽  
...  

AbstractUnderstanding the structural determinants of a protein’s biochemical properties, such as activity and stability, is a major challenge in biology and medicine. Comparing computer simulations of protein variants with different biochemical properties is an increasingly powerful means to drive progress. However, success often hinges on dimensionality reduction algorithms for simplifying the complex ensemble of structures each variant adopts. Unfortunately, common algorithms rely on potentially misleading assumptions about what structural features are important, such as emphasizing larger geometric changes over smaller ones. Here we present DiffNets, self-supervised autoencoders that avoid such assumptions, and automatically identify the relevant features, by requiring that the low-dimensional representations they learn are sufficient to predict the biochemical differences between protein variants. For example, DiffNets automatically identify subtle structural signatures that predict the relative stabilities of β-lactamase variants and duty ratios of myosin isoforms. DiffNets should also be applicable to understanding other perturbations, such as ligand binding.


Author(s):  
Joseph A. Cirilo ◽  
Laura K. Gunther ◽  
Christopher M. Yengo

Cytoskeletal motors produce force and motion using the energy from ATP hydrolysis and function in a variety of mechanical roles in cells including muscle contraction, cargo transport, and cell division. Actin-based myosin motors have been shown to play crucial roles in the development and function of the stereocilia of auditory and vestibular inner ear hair cells. Hair cells can contain hundreds of stereocilia, which rely on myosin motors to elongate, organize, and stabilize their structure. Mutations in many stereocilia-associated myosins have been shown to cause hearing loss in both humans and animal models suggesting that each myosin isoform has a specific function in these unique parallel actin bundle-based protrusions. Here we review what is known about the classes of myosins that function in the stereocilia, with a special focus on class III myosins that harbor point mutations associated with delayed onset hearing loss. Much has been learned about the role of the two class III myosin isoforms, MYO3A and MYO3B, in maintaining the precise stereocilia lengths required for normal hearing. We propose a model for how class III myosins play a key role in regulating stereocilia lengths and demonstrate how their motor and regulatory properties are particularly well suited for this function. We conclude that ongoing studies on class III myosins and other stereocilia-associated myosins are extremely important and may lead to novel therapeutic strategies for the treatment of hearing loss due to stereocilia degeneration.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Kaylyn M Bell ◽  
David M Ryba ◽  
Trisha Smit ◽  
Frank Rohret ◽  
Daniel Chin ◽  
...  

Introduction: Hypertrophic cardiomyopathy (HCM) is a progressive disease characterized by cardiac remodeling, impaired relaxation, left-atrial enlargement, and exertional intolerance. Direct myosin-inhibition with mavacamten can normalize contractility and improve exercise capacity in patients with obstructive HCM (oHCM). However, mavacamten also limits residual cross-bridges during diastole, and therefore, may offer cardiac benefits beyond obstruction relief. This in vivo study evaluated the chronic effects of MYK-581, a mavacamten surrogate, in a genetic large-animal model of HCM. Methods: Young cloned Yucatan mini-pigs with a heterozygous MYH7 R403Q mutation were randomly assigned to one of two arms: untreated-controls (CTRL, n = 29) or daily MYK-581 (n = 22; PO); wild-type pigs (WT) untreated served as disease-controls. After 14 weeks of treatment, pigs underwent in vivo cMR imaging, including T1 mapping and extracellular volume (ECV) assessments. In a subset of pigs, biomechanical studies were performed in skinned left-ventricular (LV) and left-atrial (LV) fibers. *, #: P<0.05 vs. CTRL or WT. Results: In HCM pigs, MYK-581 treatment decreased mortality (9.0* vs. 37.9% in CTRL). MYK-581 blunted cTnT leakage, reducing both absolute values (21.2 ± 3.2* vs. 34.0 ± 4.3 ng/L in CTRL) and the incidence of cTnT > 20 ng/L (36* vs. 81% in CTRL). Treated pigs had smaller LA volumes (16 ± 1* vs. 29 ± 4mL in CTRL) with lower LV T1-times and ECV (27 ± 1* vs. 32 ± 2% in CTRL). LA fibers from untreated HCM pigs showed biomechanical remodeling characteristic of chronic overload: increased maximal force (21.8 ± 1.5# vs. 14.7 ± 1.4 mN/mm2 in WT) and slowed cross-bridge formation rates (Ktr: 4.9 ± 0.4 # vs. 6.6 ± 0.6 s-1 in WT) consistent with a switch towards slow-myosin isoforms. MYK-581 prevented this remodeling (e.g., Ktr: 8.1 ± 1.3 s-1*), preserving normal LA (fast) myosin content. Conclusions: Chronic direct myosin attenuation with a mavacamten surrogate prevented left-atrial remodeling, a known prognostic indicator in HCM. Chronic treatment also reduced cardiac troponin leakage characteristic HCM, and, more importantly, decreased mortality. Taken together, these pre-clinical observations show potential salutary effects beyond obstruction relief in HCM.


2020 ◽  
Vol 117 (36) ◽  
pp. 22423-22429
Author(s):  
Darren S. Bryan ◽  
Melinda Stack ◽  
Katarzyna Krysztofiak ◽  
Urszula Cichoń ◽  
Dustin G. Thomas ◽  
...  

Metastases are the cause of the vast majority of cancer deaths. In the metastatic process, cells migrate to the vasculature, intravasate, extravasate, and establish metastatic colonies. This pattern of spread requires the cancer cells to change shape and to navigate tissue barriers. Approaches that block this mechanical program represent new therapeutic avenues. We show that 4-hydroxyacetophenone (4-HAP) inhibits colon cancer cell adhesion, invasion, and migration in vitro and reduces the metastatic burden in an in vivo model of colon cancer metastasis to the liver. Treatment with 4-HAP activates nonmuscle myosin-2C (NM2C) (MYH14) to alter actin organization, inhibiting the mechanical program of metastasis. We identify NM2C as a specific therapeutic target. Pharmacological control of myosin isoforms is a promising approach to address metastatic disease, one that may be readily combined with other therapeutic strategies.


2020 ◽  
Vol 295 (42) ◽  
pp. 14522-14535
Author(s):  
Marieke J. Bloemink ◽  
Karen H. Hsu ◽  
Michael A. Geeves ◽  
Sanford I. Bernstein

We investigated the biochemical and biophysical properties of one of the four alternative exon-encoded regions within the Drosophila myosin catalytic domain. This region is encoded by alternative exons 3a and 3b and includes part of the N-terminal β-barrel. Chimeric myosin constructs (IFI-3a and EMB-3b) were generated by exchanging the exon 3–encoded areas between native slow embryonic body wall (EMB) and fast indirect flight muscle myosin isoforms (IFI). We found that this exchange alters the kinetic properties of the myosin S1 head. The ADP release rate (k-D) in the absence of actin is completely reversed for each chimera compared with the native isoforms. Steady-state data also suggest a reciprocal shift, with basal and actin-activated ATPase activity of IFI-3a showing reduced values compared with wild-type (WT) IFI, whereas for EMB-3b these values are increased compared with wild-type (WT) EMB. In the presence of actin, ADP affinity (KAD) is unchanged for IFI-3a, compared with IFI, but ADP affinity for EMB-3b is increased, compared with EMB, and shifted toward IFI values. ATP-induced dissociation of acto-S1 (K1k+2) is reduced for both exon 3 chimeras. Homology modeling, combined with a recently reported crystal structure for Drosophila EMB, indicates that the exon 3–encoded region in the myosin head is part of the communication pathway between the nucleotide binding pocket (purine binding loop) and the essential light chain, emphasizing an important role for this variable N-terminal domain in regulating actomyosin crossbridge kinetics, in particular with respect to the force-sensing properties of myosin isoforms.


Sign in / Sign up

Export Citation Format

Share Document