scholarly journals Metric spaces in type theory via formal topology (Extended Abstract)

2000 ◽  
Vol 35 ◽  
pp. 1-11
Author(s):  
G CURI
1997 ◽  
Vol 62 (4) ◽  
pp. 1315-1332 ◽  
Author(s):  
Sara Negri ◽  
Silvio Valentini

In this paper we give a constructive proof of the pointfree version of Tychonoff's theorem within formal topology, using ideas from Coquand's proof in [7]. To deal with pointfree topology Coquand uses Johnstone's coverages. Because of the representation theorem in [3], from a mathematical viewpoint these structures are equivalent to formal topologies but there is an essential difference also. Namely, formal topologies have been developed within Martin Löf's constructive type theory (cf. [16]), which thus gives a direct way of formalizing them (cf. [4]).The most important aspect of our proof is that it is based on an inductive definition of the topological product of formal topologies. This fact allows us to transform Coquand's proof into a proof by structural induction on the last rule applied in a derivation of a cover. The inductive generation of a cover, together with a modification of the inductive property proposed by Coquand, makes it possible to formulate our proof of Tychonoff s theorem in constructive type theory. There is thus a clear difference to earlier localic proofs of Tychonoff's theorem known in the literature (cf. [9, 10, 12, 14, 27]). Indeed we not only avoid to use the axiom of choice, but reach constructiveness in a very strong sense. Namely, our proof of Tychonoff's theorem supplies an algorithm which, given a cover of the product space, computes a finite subcover, provided that there exists a similar algorithm for each component space.


2014 ◽  
Vol 14 (01) ◽  
pp. 1450005 ◽  
Author(s):  
Benno van den Berg ◽  
Ieke Moerdijk

We propose an extension of Aczel's constructive set theory CZF by an axiom for inductive types and a choice principle, and show that this extension has the following properties: it is interpretable in Martin-Löf's type theory (hence acceptable from a constructive and generalized-predicative standpoint). In addition, it is strong enough to prove the Set Compactness theorem and the results in formal topology which make use of this theorem. Moreover, it is stable under the standard constructions from algebraic set theory, namely exact completion, realizability models, forcing as well as more general sheaf extensions. As a result, methods from our earlier work can be applied to show that this extension satisfies various derived rules, such as a derived compactness rule for Cantor space and a derived continuity rule for Baire space. Finally, we show that this extension is robust in the sense that it is also reflected by the model constructions from algebraic set theory just mentioned.


10.29007/hl75 ◽  
2018 ◽  
Author(s):  
Claudio Sacerdoti Coen ◽  
Silvio Valentini

It is well known that general recursion cannot be expressed within Martin-Löf's type theory and that various approaches have been proposed to overcome this problem still maintaining the termination of the computation of the typable terms. In this work we propose a new approach to this problem based on the use of inductively generated formal topologies.


Author(s):  
Rob Nederpelt ◽  
Herman Geuvers
Keyword(s):  

1969 ◽  
Vol 130 (1-6) ◽  
pp. 277-303 ◽  
Author(s):  
Aloysio Janner ◽  
Edgar Ascher

Sign in / Sign up

Export Citation Format

Share Document