Preparation of Aptamer-functionalized Au@pNTP@SiO2 Core-Shell Surface-enhanced Raman Scattering Probes for Raman Imaging Study of Adhesive Tape Transferred-Latent Fingerprints

2019 ◽  
Vol 47 (7) ◽  
pp. 998-1005 ◽  
Author(s):  
Yang-Yang ZHOU ◽  
Yu-Mei DU ◽  
Xiao-Jun BIAN ◽  
Juan YAN
Nanoscale ◽  
2014 ◽  
Vol 6 (15) ◽  
pp. 9063-9070 ◽  
Author(s):  
Zhi Yong Bao ◽  
Dang Yuan Lei ◽  
Ruibin Jiang ◽  
Xin Liu ◽  
Jiyan Dai ◽  
...  

Surface-enhanced Raman scattering spectroscopy using bifunctional Au@Pt core–shell nanostructures can monitor the catalytic reaction dynamics in real time.


NANO ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. 1750131 ◽  
Author(s):  
Jian Chen ◽  
Peitao Dong ◽  
Chaoguang Wang ◽  
Chenyu Zhang ◽  
Junfeng Wang ◽  
...  

A simple method for improving surface-enhanced Raman scattering (SERS) performance of aligned silver nanorod (Ag NR) array was investigated. This method was to construct a kind of hybrid substrate by grafting Au@Ag core–shell nanoparticles (NPs) into Ag NR array using poly(2-vinylphridine) (P2VPy) as a bridging agent. The hybrid substrate yielded excellent SERS performance as its detection limit improved from 10[Formula: see text] M to 10[Formula: see text] M using trans-1,2-bis(4-pyridyl)ethylene (BPE) as probe molecule, which was increased by two orders of magnitude compared with Ag NR array substrate. The significant improvement of SERS performance of Ag NR arrays was attributed to the addition of Au@Ag core–shell NPs. As a result of surface plasmon resonance generated by the interaction of electromagnetic (EM) (IAEM) filed between NP and NR structures, increasing hotspots were found at the connections of NPs and NRs, the gaps of adjacent rods, and the gaps of two particles consequently. These results were validated by the finite difference time domain (FDTD) calculation. Besides, hybrid substrate shows good performance in stability and reproducibility. The proposed method was simple and robust, which promoted SERS performance of Ag NR array effectively, showing great potential in the application of SERS substrate fabrication and SERS-based bio-chemical sensing.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 629 ◽  
Author(s):  
Yudong Lu ◽  
Ting Zhou ◽  
Ruiyun You ◽  
Yang Wu ◽  
Huiying Shen ◽  
...  

Herein we utilized coordination interactions to prepare a novel core-shell plasmonic nanosensor for the detection of glucose. Specifically, Au nanoparticles (NPs) were strongly linked with Ag+ ions to form a sacrificial Ag shell by using 4-aminothiophenol (4-PATP) as a mediator, which served as an internal standard to decrease the influence of the surrounding on the detection. The resultant Au-PATP-Ag core-shell systems were characterized by UV-vis spectroscopy, transmission electron microscopy, and surface-enhanced Raman scattering (SERS) techniques. Experiments performed with R6G (rhodamine 6G) and CV (crystal violet) as Raman reporters demonstrated that the Au@Ag nanostructure amplified SERS signals obviously. Subsequently, the Au@Ag NPs were decorated with 4-mercaptophenylboronic acid (4-MPBA) to specifically recognize glucose by esterification, and a detection limit as low as 10−4 M was achieved. Notably, an enhanced linearity for the quantitative detection of glucose (R2 = 0.995) was obtained after the normalization of the spectral peaks using 4-PATP as the internal standard. Finally, the practical applicability of the developed sensing platform was demonstrated by the detection of glucose in urine with acceptable specificity.


Sign in / Sign up

Export Citation Format

Share Document