Chapter 2 Phanerozoic Evolution of the Sedimentary Cover of the North American Craton

Author(s):  
Peter M. Burgess
1993 ◽  
Vol 30 (4) ◽  
pp. 776-786
Author(s):  
G. Murthy ◽  
R. Pätzold

The Pridolian Clam Bank Formation around Lourdes Cove on the Port au Port Peninsula, western Newfoundland, underwent deformation during the Acadian orogeny. As a result, some of the beds were overturned, but the stratification planes can be accurately determined everywhere. Paleomagnetic studies of the Clam Bank Formation have yielded three well-defined components of magnetization, all acquired subsequent to the deformation event: component A with D = 337.3°, I = −28.3°, (N = 16 sites, k = 25.3, α95 = 7.5°), with a corresponding paleopole at 23.2°N, 145.0°E (dp, dm = 4.5°, 8.2°); component B with D = 172.9°, I = 5.7° (N = 35 specimens, k = 10.2, α95 = 6.4°), with a corresponding paleopole at 38.2°N, 130.1°E (dp, dm = 3.2°, 6.4°); component C with D = 350.4°, I = 69.8° (N = 33 specimens, k = 8.9, α95 = 8.9°). A pre-Mesozoic origin of the A and B components is indicated by the presence of normal and reversed components in specific sites; by the lack of correspondence between the A and B paleopoles and the Mesozoic and later pole positions from the Appalachians and the North American craton; and by agreement with Paleozoic poles from the region. The A component was probably acquired immediately after deformation during the Acadian orogeny. The B component is probably a chemical remanence that was acquired during Permo-Carboniferous (Kiaman) time. The C component is of recent origin, probably acquired in the present Earth's field. Paleomagnetic data from western Newfoundland are used in a localized setting to construct a paleopole sequence and to estimate paleolatitudes for western Newfoundland during the Paleozoic. Keeping in mind the paucity of data for Siluro-Devonian age from this region, western Newfoundland seems to have been at its southernmost position at the end of the Ordovician and to have occupied equatorial latitudes during the Permo-Carboniferous. The paleolatitude trend suggests that this block, which is part of the North American craton, moved in a southerly direction during the early Paleozoic and in a northerly direction during the middle and late Paleozoic.


1989 ◽  
Vol 26 (2) ◽  
pp. 296-304 ◽  
Author(s):  
Julie E. Gales ◽  
Ben A. van der Pluijm ◽  
Rob Van der Voo

Paleomagnetic sampling of the Lawrenceton Formation of the Silurian Botwood Group in northeastern Newfoundland was combined with detailed structural mapping of the area in order to determine the deformation history and make adequate structural corrections to the paleomagnetic data.Structural analysis indicates that the Lawrenceton Formation experienced at least two folding events: (i) a regional northeast–southwest-trending, Siluro-Devonian folding episode that produced a well-developed axial-plane cleavage; and (ii) an episode of local north-trending folding. Bedding – regional cleavage relationships indicate that the latter event is older than the regional folding.Thermal demagnetization of the Lawrenceton Formation yielded univectorial southerly and shallow directions (in situ). A fold test on an early mesoscale fold indicates that the magnetization of the Botwood postdates this folding event. However, our results, combined with an earlier paleomagnetic study of nearby Lawrenceton Formation rocks, demonstrate that the magnetization predates the regional folding. Therefore, we conclude that the magnetization occurred subsequent to the local folding but prior to the period of regional folding.While a tectonic origin for local folding cannot be entirely excluded, the subaerial nature of these volcanics, the isolated occurrence of these folds, and the absence of similar north-trending folds in other areas of eastern Notre Dame Bay suggest a syndepositional origin. Consequently, the magnetization may be nearly primary. Our study yields a characteristic direction of D = 175°, I = +43°, with a paleopole (16°N, 131 °E) that plots near the mid-Silurian track of the North American apparent polar wander path. This result is consistent with an early origin for the magnetization and supports the notion that the Central Mobile Belt of Newfoundland was adjacent to the North American craton, in its present-day position, since the Silurian.


2003 ◽  
Vol 40 (10) ◽  
pp. 1321-1334 ◽  
Author(s):  
David TA Symons ◽  
Philippe Erdmer ◽  
Phil JA McCausland

Eocene posttectonic plutons of the Beaver River alkalic complex in southeastern Yukon intruded Devonian–Mississippian and Triassic sandstones in the Foothills of the Canadian Cordillera. A paleomagnetic collection of 27 sites from three separate plutons produced 326 specimens that were analyzed using alternating field and thermal step demagnetization methods. The A component characteristic remanent magnetization (ChRM) resides in magnetite with normal polarity in the 42.6 ± 0.8 Ma Beaver River pluton, reversed polarity in the 42.1 ± 0.7 Ma Larson Creek East pluton, and both polarities in the 41.3 ± 0.4 Ma Larson Creek West pluton, corresponding with magnetic polarity chrons 20n, 19r, and the boundary between chron 19r and 18n, respectively. The ChRMs of the plutons are indistinguishable (2σ) with a mean for the 42.0 ± 0.5 Ma complex of D = 158.8°, I = –73.1° (N = 21 sites, α95 = 3.0°, k = 116.8). A positive paleomagnetic contact test shows the A component to be primary, and the poorly isolated B component suggests the host rocks for Larson Creek West are Early to Middle Devonian. The paleopole for the Beaver River complex at 79.2°N, 145.8°E (N = 21, dp = 4.8°, dm = 5.4°; Q = 7) is concordant with interpolated 42 Ma reference poles for the North American craton. In contrast, paleopoles from the accreted Intermontane and eastern Coast Belt terranes record clockwise rotations of 24° ± 10° (Eocene) and 13° ± 5° (Oligocene–Pliocene), indicating that the allochthonous Intermontane terranes have been progressively driven ~240 ± 120 km eastwards up and over pericratonic and cratonic North American lower crust by Pacific plate subduction since the mid-Eocene.


Sign in / Sign up

Export Citation Format

Share Document