devonian age
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 17)

H-INDEX

23
(FIVE YEARS 0)

2021 ◽  
Vol 118 (34) ◽  
pp. e2017342118
Author(s):  
Louise M. A. Hawkins ◽  
J. Michael Grappone ◽  
Courtney J. Sprain ◽  
Patipan Saengduean ◽  
Edward J. Sage ◽  
...  

The Mesozoic Dipole Low (MDL) is a period, covering at least ∼80 My, of low dipole moment that ended at the start of the Cretaceous Normal Superchron. Recent studies of Devonian age Siberian localities identified similarly low field values a few tens of million years prior to the Permo-Carboniferous Reverse Superchron (PCRS). To constrain the length and timing of this potential dipole low, this study presents paleointensity estimates from Strathmore (∼411 to 416 Ma) and Kinghorn (∼332 Ma) lava flows, United Kingdom. Both localities have been studied for paleomagnetic poles (Q values of 6 to 7), and the sites were assessed for their suitability for paleointensity from paleodirections, rock magnetic analysis, and microscopy. Thermal and microwave experiments were used to determine site mean paleointensity estimates of ∼3 to 51 μT (6 to 98 ZAm2) and 4 to 11 μT (9 to 27 ZAm2) from the Strathmore and Kinghorn localities, respectively. These, and all the sites from 200 to 500 Ma from the (updated) Paleointensity database (PINT15), were assessed using the Qualitative Paleointensity criteria (QPI). The procurement of reliable (QPI ≥ 5) weak paleointensity estimates from this and other studies indicates a period of low dipole moment (median field strength of 17 ZAm2) from 332 to 416 Ma. This “Mid-Paleozoic Dipole Low (MPDL)” bears a number of similarities to the MDL, including the substantial increase in field strength near the onset of the PCRS. The MPDL also adds support to the inverse relationship between reversal frequency and field strength and a possible ∼200-My cycle in paleomagnetic behavior relating to mantle convection.


2021 ◽  
Vol 572 ◽  
pp. 110395
Author(s):  
Nezha Lazreq ◽  
Peter Königshof ◽  
Abderrahim Essaifi ◽  
Ali Bouari ◽  
Abdelhak Outigua
Keyword(s):  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
J. Parnell ◽  
X. Wang ◽  
A. Raab ◽  
J. Feldmann ◽  
C. Brolly ◽  
...  

Iron oxide grain coatings in red sandstones contain trace metals that are released upon dissolution of the coatings. Analyses by ICP-MS following acid leaching of the grain coatings show that the dissolved metals can constitute an ore-forming fluid, as hypothesized in models for sandstone-hosted ore deposits. Median compositions of 37 samples, mostly of Triassic to Devonian age, from across Britain and Ireland are 6.3 ppm copper, 2.4 ppm cobalt, 10.1 ppm vanadium, and 0.3 ppm uranium. These contents at the basin scale are adequate to form the observed range of ore deposits in red beds. The migration of hydrocarbons or brines can cause the dissolution of grain coatings and contributes to controlling the distribution of ore deposits. Future measurements should test red beds derived from uplifted, mineralized plate margins, in which sandstones may be preloaded with ore metals.


Author(s):  
John Graham ◽  
Nancy Riggs

The Silurian Croagh Patrick succession, which crops out just south of a fundamental Caledonian structural zone near Clew Bay, western Ireland, is a series of psammites and pelites with a strong penetrative cleavage. These rocks are intruded by the Corvock granite. A suite of minor intrusions associated with the granite contains the regional cleavage whereas the Corvock granite is undeformed. New U-Pb dates are 413 + 7 / -4 Ma for a strongly cleaved sill and 410 ± 4 Ma for the main granite and closely constrain the age of crystallization of the granite and coeval cleavage formation as Lower Devonian (Lochkovian or Pragian), implying syn- to late-kinematic granite emplacement. These data are consistent with evidence for strong sinistral shear shown by the Ox Mountains granodiorite just to the north-east dated at 412.3 ± 0.8 Ma. This Devonian cleavage is superimposed on Ordovician rocks of the South Mayo Trough. The localisation of the strong deformation is interpreted as being due to its position at a restraining bend during regional sinistral motion on a segment of the Fair Head-Clew Bay Line to the north. Contemporaneous deformation in the syn-kinematic Donegal batholith suggests a transfer of sinistral motion to this intra-Grampian structure rather than simple along-strike linkage to the Highland Boundary Fault in Scotland. Our new data indicate diachronous deformation during the late Silurian and early Devonian history of the Irish and Scottish Caledonides and also support previous interpretations of diachronous deformation between these areas and the Appalachian orogens.


Author(s):  
V. A. Stepanov ◽  

Information on the geological and isotopic age of the Kubaka gold-silver deposit in the Omolon middle massif in the North-East of Russia is presented. It has been established that the Kubaka deposit geological age lies in between the Late Devonian age of the Kedon series volcanites, containing the gold-silver mineralization, and the Early Carboniferous age of the Korbinsky suite terrigenous rocks, overlapping the volcanites and the mineralization. The post-ore nature of the Omolon complex dykes, which produce no significant impact on the distribution of gold mineralization in ore bodies, is shown. According to isotope dating, the following stages of the Kubaka deposit formation are distinguished: the accumulation of the Kubaka suite tuffs (369 Ma); the introduction of subvolcanic intrusions (344 and 337 Ma); the formation of ore metasomatites (335±5 Ma); the formation of gold-silver mineralization (330 and 334 - 324 Ma); the introduction of post-ore dikes (179±8 - 176±10 Ma).


Author(s):  
A. Munkhjargal ◽  
P. Königshof ◽  
J. A. Waters ◽  
S. K. Carmichael ◽  
S. Gonchigdorj ◽  
...  

AbstractThe Bayankhoshuu Ruins section in southern Mongolia is characterized by strongly thrusted and folded sequences. Overall, three sections ranging from Ordovician to Carboniferous rocks were studied. Facies analysis combined with stratigraphic data provide improved lithostratigraphic descriptions of Palaeozoic successions in the Mushgai region. The overall marine sedimentary sequence is punctuated by volcanic rocks–basaltic lava of Silurian and Middle Devonian age and volcaniclastic bentonite and tuff in the Middle to Late Devonian and Mississippian suggesting an island arc setting. The Minjin Member of the Botuulkhudag Formation (Middle Devonian to Late Devonian) is primarily composed of thick basaltic and subaerial volcanic rocks with minor silicified siltstone and chert inclusions. Thicker successions of limestone occur in the Ordovician/Silurian, Early Devonian, and the Mississippian. The macrofauna is scarce, except distinct limestone horizons where different fossil groups were recognized. Microfossils, such as radiolarians and conodonts, are scarce and generally poorly preserved. However, based on the re-study of collections from earlier publications and new conodont data, a more detailed biostratigraphic record of the Khoyormod, Botuulkhudag, and Arynshand formations of the Bayankhoshuu Ruins section can be developed. For instance, the Arynshand Formation likely ranges from the late Bispathodus ultimus conodont biozone to the Scaliognathus anchoralis–Doliognathus latus conodont biozone. A tectonic breccia occurs in the early Mississippian and is overlain by a red shale of remarkable thickness at the top of this formation which points to subaerial exposure in the early Mississippian (near the Tournaisian/Visean transition). Due to strong tectonic overprint and/or facies, some unconformities/hiatuses occur. Most strata are intensively folded and faulted, ranging from centimeter to meter scale. Overall, deposition likely occurred on either the Mandalovoo or Gurvansayhan Terrane.


2021 ◽  
Vol 11 (2) ◽  
pp. 608
Author(s):  
Katherine Huang ◽  
Catherine Hickson ◽  
Darrell Cotterill ◽  
Yannick Champollion

The Alberta No. 1 project is a planned power and heat (direct use) geothermal project located within the County of Grande Prairie and Municipal District of Greenview. For the project to successfully produce power and heat on a commercial scale, temperatures of 120 °C are desirable. The produced fluids must also be from highly permeable formations from depths of less than 4500 m. Bottomhole temperature measurements and wireline logs from Alberta’s extensive oil and gas database were used to determine the depths to target formations and temperatures within these formations in the project area. The target formations include the dolomitized carbonate units of Devonian age from the Beaverhill Lake Group to the top of the Precambrian Basement. Permeable Devonian-aged sandstone units such as the Granite Wash Formation are also targets. Results suggest that elevation to the top of the Beaverhill Lake Group range from 3104 m to 4094 m and temperatures at the top of the formation range from 87 °C to 123 °C in the study area. Elevation to the top of the Precambrian Basement ranges from 3205 m to 4223 m and temperatures at the formation top range from 74 °C to 124 °C. Within the area where Alberta No. 1 plans to drill, temperatures close to and exceeding 120 °C are expected within the target formations.


2021 ◽  
Vol 43 (4) ◽  
pp. 50-55
Author(s):  
L.V. SHUMLYANSKYY ◽  
V. KAMENETSKY ◽  
B.V. BORODYNYA

Results of a study of U-Pb and Hf isotope systematics and trace element concentrations in five zircon crystals separated from the Devonian Petrivske kimberlite are reported in the paper. Four zircons have yielded Paleoproterozoic and Archean ages, while one zircon grain gave a Devonian age of 383.6±4.4 Ma (weighted mean 206Pb/238U age). The Precambrian zircons have been derived from terrigenous rocks of the Mykolaivka Suite that is cut by kimberlite, or directly from the Precambrian rock complexes that constitute continental crust in the East Azov. The Devonian zircon crystal has the U-Pb age that corresponds to the age of kimberlite emplacement. It is 14 m.y. younger than zircon megacrysts found in the Novolaspa kimberlite pipe in the same area. In addition, Petrivske zircon is richer in trace elements than its counterparts from the Novolaspa pipe. Petrivske and Novolaspa zircons crystallized from two different proto-kimberlite melts, whereas the process of kimberlite formation was very complex and possibly included several episodes of formation of proto-kimberlite melts, separated by extended (over 10 M.y.) periods of time.


Author(s):  
Alexander J.P. Houben ◽  
Geert-Jan Vis

Abstract Knowledge of the stratigraphic development of pre-Carboniferous strata in the subsurface of the Netherlands is very limited, leaving the lithostratigraphic nomenclature for this time interval informal. In two wells from the southwestern Netherlands, Silurian strata have repeatedly been reported, suggesting that these are the oldest ever recovered in the Netherlands. The hypothesised presence of Silurian-aged strata has not been tested by biostratigraphic analysis. A similar lack of biostratigraphic control applies to the overlying Devonian succession. We present the results of a palynological study of core material from wells KTG-01 and S05-01. Relatively low-diversity and poorly preserved miospore associations were recorded. These, nonetheless, provide new insights into the regional stratigraphic development of the pre-Carboniferous of the SW Netherlands. The lower two cores from well KTG-01 are of a late Silurian (Ludlow–Pridoli Epoch) to earliest Devonian (Lochkovian) age, confirming that these are the oldest sedimentary strata ever recovered in the Netherlands. The results from the upper cored section from the pre-Carboniferous succession in well KTG-01 and the cored sections from the pre-Carboniferous succession in well S05-01 are more ambiguous. This inferred Devonian succession is, in the current informal lithostratigraphy of the Netherlands, assigned to the Banjaard group and its subordinate Bollen Claystone formation, of presumed Frasnian (i.e. early Late Devonian) age. Age-indicative Middle to Late Devonian palynomorphs were, however, not recorded, and the overall character of the poorly preserved palynological associations in wells KTG-01 and S05-01 may also suggest an Early Devonian age. In terms of lithofacies, however, the cores in well S05-01 can be correlated to the upper Frasnian – lower Famennian Falisolle Formation in the Campine Basin in Belgium. Hence, it remains plausible that an unconformity separates Silurian to Lower Devonian strata from Upper Devonian (Frasnian–Famennian) strata in the SW Netherlands. In general, the abundance of miospore associations points to the presence of a vegetated hinterland and a relatively proximal yet relatively deep marine setting during late Silurian and Early Devonian times. This differs markedly from the open marine depositional settings reported from the Brabant Massif area to the south in present-day Belgium, suggesting a sediment source to the north. The episodic presence of reworked (marine) acritarchs of Ordovician age suggests the influx of sedimentary material from uplifted elements on the present-day Brabant Massif to the south, possibly in relation to the activation of a Brabant Arch system.


Sign in / Sign up

Export Citation Format

Share Document