Bounded Lipschitz and Hölder Functions

2021 ◽  
pp. 220-228
Keyword(s):  
2002 ◽  
Vol 9 (1) ◽  
pp. 179-196
Author(s):  
D. Shulaia

Abstract The aim of this paper is to study, in the class of Hölder functions, a nonhomogeneous linear integral equation with coefficient cos 𝑥. Necessary and sufficient conditions for the solvability of this equation are given under some assumptions on its kernel. The solution is constructed analytically, using the Fredholm theory and the theory of singular integral equations.


2020 ◽  
Vol 14 (3) ◽  
pp. 607-629
Author(s):  
J. Huang ◽  
F. Sukochev
Keyword(s):  

Fractals ◽  
2016 ◽  
Vol 24 (04) ◽  
pp. 1650039 ◽  
Author(s):  
MOURAD BEN SLIMANE ◽  
ANOUAR BEN MABROUK ◽  
JAMIL AOUIDI

Mixed multifractal analysis for functions studies the Hölder pointwise behavior of more than one single function. For a vector [Formula: see text] of [Formula: see text] functions, with [Formula: see text], we are interested in the mixed Hölder spectrum, which is the Hausdorff dimension of the set of points for which each function [Formula: see text] has exactly a given value [Formula: see text] of pointwise Hölder regularity. We will conjecture a formula which relates the mixed Hölder spectrum to some mixed averaged wavelet quantities of [Formula: see text]. We will prove an upper bound valid for any vector of uniform Hölder functions. Then we will prove the validity of the conjecture for self-similar vectors of functions, quasi-self-similar vectors and their superpositions. These functions are written as the superposition of similar structures at different scales, reminiscent of some possible modelization of turbulence or cascade models. Their expressions look also like wavelet decompositions.


Sign in / Sign up

Export Citation Format

Share Document