single function
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 83)

H-INDEX

25
(FIVE YEARS 5)

Author(s):  
Pierre Masselot ◽  
Fateh Chebana ◽  
Taha B. M. J. Ouarda ◽  
Diane Bélanger ◽  
Pierre Gosselin

Although the relationship between weather and health is widely studied, there are still gaps in this knowledge. The present paper proposes data transformation as a way to address these gaps and discusses four different strategies designed to study particular aspects of a weather–health relationship, including (i) temporally aggregating the series, (ii) decomposing the different time scales of the data by empirical model decomposition, (iii) disaggregating the exposure series by considering the whole daily temperature curve as a single function, and (iv) considering the whole year of data as a single, continuous function. These four strategies allow studying non-conventional aspects of the mortality-temperature relationship by retrieving non-dominant time scale from data and allow to study the impact of the time of occurrence of particular event. A real-world case study of temperature-related cardiovascular mortality in the city of Montreal, Canada illustrates that these strategies can shed new lights on the relationship and outlines their strengths and weaknesses. A cross-validation comparison shows that the flexibility of functional regression used in strategies (iii) and (iv) allows a good fit of temperature-related mortality. These strategies can help understanding more accurately climate-related health.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 110
Author(s):  
Onur Günlü

The problem of reliable function computation is extended by imposing privacy, secrecy, and storage constraints on a remote source whose noisy measurements are observed by multiple parties. The main additions to the classic function computation problem include (1) privacy leakage to an eavesdropper is measured with respect to the remote source rather than the transmitting terminals’ observed sequences; (2) the information leakage to a fusion center with respect to the remote source is considered a new privacy leakage metric; (3) the function computed is allowed to be a distorted version of the target function, which allows the storage rate to be reduced compared to a reliable function computation scenario, in addition to reducing secrecy and privacy leakages; (4) two transmitting node observations are used to compute a function. Inner and outer bounds on the rate regions are derived for lossless and lossy single-function computation with two transmitting nodes, which recover previous results in the literature. For special cases, including invertible and partially invertible functions, and degraded measurement channels, exact lossless and lossy rate regions are characterized, and one exact region is evaluated as an example scenario.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Lakshay Anand ◽  
Carlos M. Rodriguez Lopez

Abstract Background The recent advancements in high-throughput sequencing have resulted in the availability of annotated genomes, as well as of multi-omics data for many living organisms. This has increased the need for graphic tools that allow the concurrent visualization of genomes and feature-associated multi-omics data on single publication-ready plots. Results We present chromoMap, an R package, developed for the construction of interactive visualizations of chromosomes/chromosomal regions, mapping of any chromosomal feature with known coordinates (i.e., protein coding genes, transposable elements, non-coding RNAs, microsatellites, etc.), and chromosomal regional characteristics (i.e. genomic feature density, gene expression, DNA methylation, chromatin modifications, etc.) of organisms with a genome assembly. ChromoMap can also integrate multi-omics data (genomics, transcriptomics and epigenomics) in relation to their occurrence across chromosomes. ChromoMap takes tab-delimited files (BED like) or alternatively R objects to specify the genomic co-ordinates of the chromosomes and elements to annotate. Rendered chromosomes are composed of continuous windows of a given range, which, on hover, display detailed information about the elements annotated within that range. By adjusting parameters of a single function, users can generate a variety of plots that can either be saved as static image or as HTML documents. Conclusions ChromoMap’s flexibility allows for concurrent visualization of genomic data in each strand of a given chromosome, or of more than one homologous chromosome; allowing the comparison of multi-omic data between genotypes (e.g. species, varieties, etc.) or between homologous chromosomes of phased diploid/polyploid genomes. chromoMap is an extensive tool that can be potentially used in various bioinformatics analysis pipelines for genomic visualization of multi-omics data.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8416
Author(s):  
Seungjun Lee ◽  
Daegun Yoon ◽  
Sangho Yeo ◽  
Sangyoon Oh

[sangyoon]As Artificial Intelligence (AI) is becoming ubiquitous in many applications, serverless computing is also emerging as a building block for developing cloud-based AI services. Serverless computing has received much interest because of its simplicity, scalability, and resource efficiency. However, due to the trade-off with resource efficiency, serverless computing suffers from the cold start problem, that is, a latency between a request arrival and function execution[sangyoon] that is encountered due to resource provisioning. [sangyoon]In serverless computing, functions can be composed as workflows to process a complex task, and the cold start problem has a significant influence on workflow response time because the cold start can occur in each function.The cold start problem significantly influences the overall response time of workflow that consists of functions because the cold start may occur in every function within the workflow. Function fusion can be one of the solutions to mitigate the cold start latency of a workflow. If two functions are fused into a single function, the cold start of the second function is removed; however, if parallel functions are fused, the workflow response time can be increased because the parallel functions run sequentially even if the cold start latency is reduced. This study presents an approach to mitigate the cold start latency of a workflow using function fusion while considering a parallel run. First, we identify three latencies that affect response time, present a workflow response time model considering the latency, and efficiently find a fusion solution that can optimize the response time on the cold start. Our method shows a response time of 28–86% of the response time of the original workflow in five workflows.


2021 ◽  
Author(s):  
Murat Sahin

In this study, the model predictive control (MPC) method was used within the scope of the control of the permanent magnet synchronous motor (PMSM). The strongest aspect of the MPC, the ability to control multiple components with a single function, is also one of the most difficult parts of its design. The fact that each component of the function has different effects requires assigning different weight coefficients to these components. In this study, the Bees Algorithm (BA) is used to determine the weights. Using the multi-objective function in BA, it has been tried to determine the weights that reduce the current values together with the speed error. Three different PI controllers have been designed to compare the MPC method. The coefficients of one of these are tuned with BA. Good Gain Method and Tyreus-Luyben Method were used in the other two. As a result of experimental studies, it has been observed that MPC can control PMSM more smoothly and accurately than PI controllers, with weights optimized with BA. With MPC, PMSM has been controlled with 15% settling time than other controllers and also with no overshoot.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 146
Author(s):  
Jiwei Fan ◽  
Ruitao Lu ◽  
Xiaogang Yang ◽  
Fan Gao ◽  
Qingge Li ◽  
...  

Explosive ordnance disposal (EOD) robots can replace humans that work in hazardous environments to ensure worker safety. Thus, they have been widely developed and deployed. However, existing EOD robots have some limitations in environmental adaptation, such as a single function, slow action speed, and limited vision. To overcome these shortcomings and solve the uncertain problem of bomb disposal on the firing range, we have developed an intelligent bomb disposal system that integrates autonomous unmanned aerial vehicle (UAV) navigation, deep learning, and other technologies. For the hardware structure of the system, we design an actuator constructed by a winch device and a mechanical gripper to grasp the unexploded ordnance (UXO), which is equipped under the six-rotor UAV. The integrated dual-vision Pan-Tilt-Zoom (PTZ) pod is applied in the system to monitor and photograph the deployment site for dropping live munitions. For the software structure of the system, the ground station exploits the YOLOv5 algorithm to detect the grenade targets for real-time video and accurately locate the landing point of the grenade. The operator remotely controls the UAV to grasp, transfer, and destroy grenades. Experiments on explosives defusal are performed, and the results show that our system is feasible with high recognition accuracy and strong maneuverability. Compared with the traditional mode of explosives defusal, the system can provide decision-makers with accurate information on the location of the grenade and at the same time better mitigate the potential casualties in the explosive demolition process.


Author(s):  
Onur Günlü

The problem of reliable function computation is extended by imposing privacy, secrecy, and storage constraints on a remote source whose noisy measurements are observed by multiple parties. The main additions to the classic function computation problem include 1) privacy leakage to an eavesdropper is measured with respect to the remote source rather than the transmitting terminals’ observed sequences; 2) the information leakage to a fusion center with respect to the remote source is considered as a new privacy leakage metric; 3) the function computed is allowed to be a distorted version of the target function, which allows to reduce the storage rate as compared to a reliable function computation scenario in addition to reducing secrecy and privacy leakages; 4) two transmitting node observations are used to compute a function. Inner and outer bounds on the rate regions are derived for lossless and lossy single-function computation with two transmitting nodes, which recover previous results in the literature. For special cases that include invertible and partially-invertible functions, and degraded measurement channels, exact lossless and lossy rate regions are characterized, and one exact region is evaluated for an example scenario.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hideaki Miyaji ◽  
Yuntao Wang ◽  
Akinori Kawachi ◽  
Atsuko Miyaji

Low output locality is a property of functions, in which every output bit depends on a small number of input bits. In IoT devices with only a fragile CPU, it is important for many IoT devices to cooperate to execute a single function. In such IoT’s collaborative work, a feature of low output locality is very useful. This is why it is desirable to reconstruct cryptographic primitives with low output locality. However, until now, commitment with a constant low output locality has been constructed by using strong randomness extractors from a nonconstant-output-locality collision-resistant hash function. In this paper, we construct a commitment scheme with output locality-3 from a constant-output-locality collision-resistant hash function for the first time. We prove the computational hiding property of our commitment by the decisional M , δ -bSVP assumption and prove the computational binding property by the M , δ -bSVP assumption, respectively. Furthermore, we prove that the M , δ -bSVP assumption can be reduced to the decisional M , δ -bSVP assumption. We also give a parameter suggestion for our commitment scheme with the 128 bit security.


2021 ◽  
pp. 004051752110600
Author(s):  
Xie Guosheng ◽  
Xu Yang ◽  
Yu Zhiqi ◽  
Sun Yize

In textile factories, the most typical warp-knitted fabric defects include point defects, holes, and color differences. Traditional manual inspection methods are inefficient for detecting these defects. Existing intelligent inspection systems often have a single function. Factories require a real-time inspection system that can detect common defects and color difference. The YOLO (you only look once) neural network is faster than the two-stage neural network and has lower hardware requirements. The system’s color difference detection algorithm compares the color difference between the standard image and the image to be measured and records where the color difference value is exceeded. Finally, the comparison of the factory application proves that the designed system has good real-time performance and accuracy and can meet the fabric inspection requirements of warp-knitted fabric factories.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012050
Author(s):  
Hongwei Ren ◽  
Yongchao Luan ◽  
Xingkun Dong ◽  
Haijun Zhou ◽  
Xin Chen ◽  
...  

Abstract With the development of society and the continuous improvement of the level of automation, automatic three-dimensional work platform is more and more popular, but now the three-dimensional work platform has a single function, and the waste of capacity is a serious problem. Therefore, this paper uses STM32F429 MCU to design a set of replaceable working position of the three axis control platform. The design of the table with replaceable work head, by identifying the ID on the head, change the control mode, enhance the functional diversity of the three-axis platform. In addition, in order to improve the universality of the system, the platform has many external communication interfaces, visual man-machine interface and LAN network communication functions.


Sign in / Sign up

Export Citation Format

Share Document