scholarly journals Asymptotics of fluctuations in Crump‒Mode‒Jagers processes: the lattice case

2018 ◽  
Vol 50 (A) ◽  
pp. 141-171
Author(s):  
Svante Janson

Abstract Consider a supercritical Crump‒Jagers process in which all births are at integer times (the lattice case). Let μ̂(z) be the generating function of the intensity of the offspring process, and consider the complex roots of μ̂(z)=1. The root of smallest absolute value is e-α=1∕m, where α>0 is the Malthusian parameter; let γ* be the root of second smallest absolute value. Subject to some technical conditions, the second-order fluctuations of the age distribution exhibit one of three types of behaviour: (i) when γ*>e-α∕2=m-1∕2, they are asymptotically normal; (ii) when γ*=e-α∕2, they are still asymptotically normal, but with a larger variance; and (iii) when γ*<e-α∕2, the fluctuations are in general oscillatory and (degenerate cases excluded) do not converge in distribution. This trichotomy is similar to what has been observed in related situations, such as some other branching processes and for Pólya urns. The results lead to a symbolic calculus describing the limits. The asymptotic results also apply to the total of other (random) characteristics of the population.

1974 ◽  
Vol 11 (04) ◽  
pp. 678-686
Author(s):  
Edgar Z. Ganuza ◽  
S. D. Durham

Letting Z(t) be the number of objects alive at time t in a general supercritical age-dependent branching process generated by a single ancestor born at time 0, one achieves (Theorem 1) mean-square convergence of Z(t)/E[Z(t)] provided and , where N(t) is the number of offspring of the initial ancestor born by time t and α is the (positive) Malthusian parameter defined by . If the stronger conditions that (Theorem 2) and hold also, then the convergence is almost-sure. It is of interest that the embedded Galton-Watson process of successive generations need not have a finite mean for the conditions of the above theorems to hold. Similar results are obtained for the age-distribution as well.


1974 ◽  
Vol 11 (4) ◽  
pp. 678-686 ◽  
Author(s):  
Edgar Z. Ganuza ◽  
S. D. Durham

Letting Z(t) be the number of objects alive at time t in a general supercritical age-dependent branching process generated by a single ancestor born at time 0, one achieves (Theorem 1) mean-square convergence of Z(t)/E[Z(t)] provided and , where N(t) is the number of offspring of the initial ancestor born by time t and α is the (positive) Malthusian parameter defined by . If the stronger conditions that (Theorem 2) and hold also, then the convergence is almost-sure. It is of interest that the embedded Galton-Watson process of successive generations need not have a finite mean for the conditions of the above theorems to hold. Similar results are obtained for the age-distribution as well.


1985 ◽  
Vol 22 (03) ◽  
pp. 503-517
Author(s):  
Helmut Pruscha

The present paper deals with continuous-time Markov branching processes allowing immigration. The immigration rate is allowed to be random and time-dependent where randomness may stem from an external source or from state-dependence. Unlike the traditional approach, we base the analysis of these processes on the theory of multivariate point processes. Using the tools of this theory, asymptotic results on parametric inference are derived for the subcritical case. In particular, the limit distributions of some parametric estimators and of Pearson-type statistics for testing simple and composite hypotheses are established.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Svante Janson

International audience We study the space requirements of a sorting algorithm where only items that at the end will be adjacent are kept together. This is equivalent to the following combinatorial problem: Consider a string of fixed length n that starts as a string of 0's, and then evolves by changing each 0 to 1, with the n changes done in random order. What is the maximal number of runs of 1's? We give asymptotic results for the distribution and mean. It turns out that, as in many problems involving a maximum, the maximum is asymptotically normal, with fluctuations of order $n^{1/2}$, and to the first order well approximated by the number of runs at the instance when the expectation is maximized, in this case when half the elements have changed to 1; there is also a second order term of order $n^{1/3}$. We also treat some variations, including priority queues and sock-sorting.


1976 ◽  
Vol 13 (3) ◽  
pp. 455-465
Author(s):  
D. I. Saunders

For the age-dependent branching process with arbitrary state space let M(x, t, A) be the expected number of individuals alive at time t with states in A given an initial individual at x. Subject to various conditions it is shown that M(x, t, A)e–at converges to a non-trivial limit where α is the Malthusian parameter (α = 0 for the critical case, and is negative in the subcritical case). The method of proof also yields rates of convergence.


1971 ◽  
Vol 8 (3) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 < m = h'(1 –) < ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) < 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.


1978 ◽  
Vol 10 (04) ◽  
pp. 744-763 ◽  
Author(s):  
L. Edler

The general age-dependent branching model of Crump, Mode and Jagers will be generalized towards generation-dependent varying lifespan and reproduction distributions. A system of integral and renewal equations is established for the generating functions and the first two moments of Zi (t) (the number of individuals alive at time t), if the population was initiated at time 0 by one ancestor of age 0 from generation i. Convergence in quadratic mean of Zi (t)/EZi (t) as t tends to infinity is obtained if the generation-dependent reproduction functions converge to a supercritical one. In particular, if this convergence is slow enough t γ exp (αt) is the asymptotic behavior of EZi (t) for t tending to infinity, where γ is a positive real number and α the Malthusian parameter of growth of the limiting reproduction function.


1971 ◽  
Vol 8 (03) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 &lt; m = h'(1 –) &lt; ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) &lt; 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.


1994 ◽  
Vol 31 (02) ◽  
pp. 333-347
Author(s):  
Thierry Huillet ◽  
Andrzej Kłopotowski

This paper is concerned with the description of both a deterministic and stochastic branching procedure. The renewal equations for the deterministic branching population are first derived which allow for asymptotic results on the ‘number' and ‘generation' processes. A probabilistic version of these processes is then studied which presents some discrepancy with the standard Harris age-dependent branching processes.


Sign in / Sign up

Export Citation Format

Share Document