Finitely presented groups and the finite generation of exterior powers

Author(s):  
C J B Brookes
Author(s):  
David E. Galewski

0. Introduction. A group π has weak dimension (wd) ≤ n (see Cartan and Ellen-berg (2)) if Hk(π, A) = 0 for all right Z(π)-modules A and all k > n. We say that the weak dimension of a manifold M is ≤ n if wd (πl(M))≤ n. In section 1 we show that open, orientable, irreducible 3-manifolds have wd ≤ 1 if and only if they are the monotone on of 1-handle bodies. In his celebrated theorem (10), Stallings proves that finitely presented groups of cohomological dimensions ≤ 1 are free. In section 2 we prove that if π is a finitely presented group which is the fundamental group of any orientable 3-manifold with wd ≤ 1 then π is free. We also give an example to show that the finite generation of π is necessary. (Swan (11) removes the finitely presented hypothesis from Stalling's theorem.) Finally, in section 3 we generalize a theorem of McMillan (5) and prove that if M is an open, orientable, irreducible 3-manifold with finitely generated fundamental group, then M is stably (taking the product with n ≥ 1 copies of ℝ) a connected sum along the boundary of trivial (n+2)-disc Sl bundles.


1968 ◽  
Vol 33 (2) ◽  
pp. 296-297
Author(s):  
J. C. Shepherdson

1991 ◽  
Vol 01 (03) ◽  
pp. 339-351
Author(s):  
ROBERT H. GILMAN

This paper is concerned with computation in finitely presented groups. We discuss a procedure for showing that a finite presentation presents a group with a free subgroup of finite index, and we give methods for solving various problems in such groups. Our procedure works by constructing a particular kind of partial groupoid whose universal group is isomorphic to the group presented. When the procedure succeeds, the partial groupoid can be used as an aid to computation in the group.


2017 ◽  
Vol 11 (1) ◽  
pp. 291-310
Author(s):  
Daniele Ettore Otera ◽  
Valentin Poénaru

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 282 ◽  
Author(s):  
Andrea Coladangelo

We describe a two-player non-local game, with a fixed small number of questions and answers, such that an ϵ-close to optimal strategy requires an entangled state of dimension 2Ω(ϵ−1/8). Our non-local game is inspired by the three-player non-local game of Ji, Leung and Vidick \cite{ji2018three}. It reduces the number of players from three to two, as well as the question and answer set sizes. Moreover, it provides an (arguably) elementary proof of the non-closure of the set of quantum correlations, based on embezzlement and self-testing. In contrast, previous proofs \cite{slofstra2019set, dykema2017non, musat2018non} involved representation theoretic machinery for finitely-presented groups and C∗-algebras.


Sign in / Sign up

Export Citation Format

Share Document