Further implications of the Second Law. Introduction of the Helmholtz free energy, Gibbs free energy, chemical potential, and applications to phase equilibria, heat transfer, and mass transfer

Author(s):  
Dennis Sherwood ◽  
Paul Dalby

A critical chapter, explaining how the principles of thermodynamics can be applied to real systems. The central concept is the Gibbs free energy, which is explored in depth, with many examples. Specific topics addressed are: Spontaneous changes in closed systems. Definitions and mathematical properties of Gibbs free energy and Helmholtz free energy. Enthalpy- and entropy-driven reactions. Maximum available work. Coupled reactions, and how to make non-spontaneous changes happen, with examples such as tidying a room, life, and global warming. Standard Gibbs free energies. Mixtures, partial molar quantities and the chemical potential.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (2) ◽  
pp. 92-94 ◽  
Author(s):  
J.-C. Zhao

AbstractA mnemonic scheme is presented to help recall the equations in classical thermodynamics that connect the four state variables (temperature, pressure, volume, and entropy) to the four thermodynamic potentials (internal energy, Helmholtz free energy, enthalpy, and Gibbs free energy). Max Born created a square to help recall the thermodynamic equations. The new scheme here separates the Max Born square into two squares, resulting in easier recalling of several sets of equations, including the Maxwell equations, without complicated rules to remember the positive or negative signs.


Author(s):  
Norman J. Morgenstern Horing

Chapter 6 introduces quantum-mechanical ensemble theory by proving the asymptotic equivalence of the quantum-mechanical, microcanonical ensemble average with the quantum grand canonical ensemble average for many-particle systems, based on the method of Darwin and Fowler. The procedures involved identify the grand partition function, entropy and other statistical thermodynamic variables, including the grand potential, Helmholtz free energy, thermodynamic potential, Gibbs free energy, Enthalpy and their relations in accordance with the fundamental laws of thermodynamics. Accompanying saddle-point integrations define temperature (inverse thermal energy) and chemical potential (Fermi energy). The concomitant emergence of quantum statistical mechanics and Bose–Einstein and Fermi–Dirac distribution functions are discussed in detail (including Bose condensation). The magnetic moment is derived from the Helmholtz free energy and is expressed in terms of a one-particle retarded Green’s function with an imaginary time argument related to inverse thermal energy. This is employed in a discussion of diamagnetism and the de Haas-van Alphen effect.


2014 ◽  
Vol 3 (3) ◽  
pp. 278-285
Author(s):  
Yi Fang

The fundamental physical law of protein folding is the second law of thermodynamics. The key to solve proteinfolding problem is to derive an analytic formula of the Gibbs free energy. It has been overdue for too long. Let U be a monomeric globular protein whose M atoms 1 M a are classified into hydrophobicity classes H H , ,H 1H 2.


Sign in / Sign up

Export Citation Format

Share Document