classical thermodynamics
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 52)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Mykola Zipunnikov ◽  
Svetlana Bukhkalo

The analysis of the prospects for the development of hydrogen energy in the EU and Ukraine is carried out. The possibilities of implementing projects and technologies for the production of green hydrogen for industrial use are considered. The conditions for the implementation of the project for the creation of a research and development center for hydrogen and hydrogen fuel cell technology are presented. A review of publications devoted to the process of obtaining hydrogen from water has been completed. The main factors influencing the course of reactions in the production of hydrogen from water using alloys are considered. Recommended alloys for producing hydrogen at autonomous facilities. The components of the research algorithm are given taking into account the system of process factors based on the analysis of literature data on the technology of hydrogen production by the electrolysis of water. The general principles of calculating gas generators have been established, which should be based on the basic principles of the thermodynamics of heterogeneous processes: classical thermodynamics of multiphase and heterogeneous systems.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Juan F. Pedraza ◽  
Andrew Svesko ◽  
Watse Sybesma ◽  
Manus R. Visser

Abstract Quantum extremal surfaces (QES), codimension-2 spacelike regions which extremize the generalized entropy of a gravity-matter system, play a key role in the study of the black hole information problem. The thermodynamics of QESs, however, has been largely unexplored, as a proper interpretation requires a detailed understanding of backreaction due to quantum fields. We investigate this problem in semi-classical Jackiw-Teitelboim (JT) gravity, where the spacetime is the eternal two-dimensional Anti-de Sitter (AdS2) black hole, Hawking radiation is described by a conformal field theory with central charge c, and backreaction effects may be analyzed exactly. We show the Wald entropy of the semi-classical JT theory entirely encapsulates the generalized entropy — including time-dependent von Neumann entropy contributions — whose extremization leads to a QES lying just outside of the black hole horizon. Consequently, the QES defines a Rindler wedge nested inside the enveloping black hole. We use covariant phase space techniques on a time-reflection symmetric slice to derive a Smarr relation and first law of nested Rindler wedge thermodynamics, regularized using local counterterms, and intrinsically including semi-classical effects. Moreover, in the microcanonical ensemble the semi-classical first law implies the generalized entropy of the QES is stationary at fixed energy. Thus, the thermodynamics of the nested Rindler wedge is equivalent to the thermodynamics of the QES in the microcanonical ensemble.


Author(s):  
Emmerich Wilhelm

AbstractThe liquid state is one of the three principal states of matter and arguably the most important one; and liquid mixtures represent a large research field of profound theoretical and practical interest. This topic is of importance in many areas of the applied sciences, such as in chemical engineering, geochemistry, the environmental sciences, biophysics and biomedical technology. First, I will concisely present a review of important concepts from classical thermodynamics of nonelectrolyte solutions; this will be followed by a survey of (semi-)empirical approaches to representing the composition and temperature dependence of selected thermodynamic mixture properties, and finally the focus will be on dilute binary nonelectrolyte solutions where one component, a supercritical solute, is present in much smaller quantity than the other component, called the solvent. Partial molar properties in the limit of infinite dilution (indicated by a superscript ∞) are of particular interest. For instance, activity coefficients (Lewis–Randall (LR) convention) are customarily used to characterize mixing behavior, and infinite-dilution values $$\gamma_{i}^{{{\text{LR,}}\infty }}$$ γ i LR, ∞ provide a convenient route for obtaining binary parameters for several popular solution models. When discussing solute (j)—solvent (i) interactions in solutions where the solute is supercritical, the Henry fugacity $$h_{j,i} \left( {T,P} \right)$$ h j , i T , P , also known as Henry’s law (HL) constant, is a measurable thermodynamic key quantity. Its temperature dependence yields information on the partial molar enthalpy change on solution $$\Delta H_{j}^{\infty } \left( {T,P} \right)$$ Δ H j ∞ T , P , while its pressure dependence yields information on the partial molar volume $$V_{j}^{{{\text{L,}}\infty }} \left( {T,P} \right)$$ V j L, ∞ T , P of solute j in the liquid phase (superscript L). I will clarify issues frequently overlooked, touch upon solubility data reduction and correlation, report a few recent high-precision experimental results on dilute aqueous solutions of supercritical nonelectrolytes, and show the equivalency of results for caloric quantities (e.g. $$\Delta H_{j}^{\infty }$$ Δ H j ∞ ) obtained via van ’t Hoff analysis of high-precision solubility data with directly measured calorimetric data.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


2021 ◽  
Vol 875 (1) ◽  
pp. 012015
Author(s):  
N S Kamalova ◽  
N Yu Evsikova ◽  
Yu V Krutskikh

Abstract For the development of systems for predicting the state of forests and trees, adequate models of the influence of temperature and humidity environment fluctuations on the kinetics of the wood microstructure are needed. Formalized modeling should be based on monitoring data obtained with controlled accuracy in real time. The aim of the work was to substantiate the layout of a device for measuring the potential difference in tree trunks to study their state. For the first time in the article, the recorder layout with the operating principle based on the phenomenon of thermally stimulated polarization of wood has substantiated. In addition, a formalized model has presented for processing the monitoring data of the studied potential difference in the framework of classical thermodynamics, which makes it possible to determine the parameters of the kinetics of the microstructure of wood in tree trunks at fluctuations of external factors. As a result of the research carried out, a model of a digital device for assessing the state of wood of tree trunks was developed. The proposed device for recording the response of the trunk wood on the fluctuations of external factors practically does not violate the unique microstructure of the biocomposite and has a controlled accuracy in real time.


2021 ◽  
Vol 1 ◽  
pp. 67
Author(s):  
Silvano Tosti

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy. Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process. Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs free energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction. Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 889
Author(s):  
Akram Touil ◽  
Kevin Weber ◽  
Sebastian Deffner

In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.


Sign in / Sign up

Export Citation Format

Share Document