The Newtonian viscous fluid approximation. Applications: the boundary layer

2014 ◽  
pp. 137-149
Author(s):  
G. I. Barenblatt
2017 ◽  
Vol 21 (6 Part B) ◽  
pp. 2795-2802
Author(s):  
Gabriella Bognar

The similarity method is presented for the determination of the velocity and the temperature distribution in the boundary-layer next to a horizontal moving surface heated convectively from below. The basic partial differential equations are transformed to a system of ordinary differential equations subjected to boundary conditions.


1988 ◽  
Vol 66 (7) ◽  
pp. 576-579
Author(s):  
G. T. Karahalios ◽  
C. Sfetsos

A sphere executes small-amplitude linear and torsional oscillations in a fluid at rest. The equations of motion of the fluid are solved by the method of successive approximations. Outside the boundary layer, a steady secondary flow is induced in addition to the time-varying motion.


2013 ◽  
Vol 38 ◽  
pp. 61-73
Author(s):  
MA Haque

In this paper laminar flow of incompressible viscous fluid has been considered. Here two numerical methods for solving boundary layer equation have been discussed; (i) Keller Box scheme, (ii) Shooting Method. In Shooting Method, the boundary value problem has been converted into an equivalent initial value problem. Finally the Runge-Kutta method is used to solve the initial value problem. DOI: http://dx.doi.org/10.3329/rujs.v38i0.16549 Rajshahi University J. of Sci. 38, 61-73 (2010)


Sign in / Sign up

Export Citation Format

Share Document