Leaf conjugacies on the torus

2013 ◽  
Vol 33 (3) ◽  
pp. 896-933 ◽  
Author(s):  
ANDY HAMMERLINDL

AbstractIf a partially hyperbolic diffeomorphism on a torus of dimension $d\geq 3$ has stable and unstable foliations which are quasi-isometric on the universal cover, and its centre direction is one-dimensional, then the diffeomorphism is leaf conjugate to a linear toral automorphism. In other words, the hyperbolic structure of the diffeomorphism is exactly that of a linear, and thus simple to understand, example. In particular, every partially hyperbolic diffeomorphism on the 3-torus is leaf conjugate to a linear toral automorphism.

2020 ◽  
pp. 1-17
Author(s):  
THOMAS BARTHELMÉ ◽  
SERGIO R. FENLEY ◽  
STEVEN FRANKEL ◽  
RAFAEL POTRIE

Abstract We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends [C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geom. Topol., to appear] to the whole isotopy class. We relate the techniques to the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in [T. Barthelmé, S. Fenley, S. Frankel and R. Potrie. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The dynamically coherent case. Preprint, 2019, arXiv:1908.06227; Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part II: Branching foliations. Preprint, 2020, arXiv: 2008.04871]. The appendix reviews some consequences of the Nielsen–Thurston classification of surface homeomorphisms for the dynamics of lifts of such maps to the universal cover.


2021 ◽  
Vol 17 (0) ◽  
pp. 557
Author(s):  
Jinhua Zhang

<p style='text-indent:20px;'>We prove that for any partially hyperbolic diffeomorphism having neutral center behavior on a 3-manifold, the center stable and center unstable foliations are complete; moreover, each leaf of center stable and center unstable foliations is a cylinder, a Möbius band or a plane.</p><p style='text-indent:20px;'>Further properties of the Bonatti–Parwani–Potrie type of examples of of partially hyperbolic diffeomorphisms are studied. These are obtained by composing the time <inline-formula><tex-math id="M1">\begin{document}$ m $\end{document}</tex-math></inline-formula>-map (for <inline-formula><tex-math id="M2">\begin{document}$ m&gt;0 $\end{document}</tex-math></inline-formula> large) of a non-transitive Anosov flow <inline-formula><tex-math id="M3">\begin{document}$ \phi_t $\end{document}</tex-math></inline-formula> on an orientable 3-manifold with Dehn twists along some transverse tori, and the examples are partially hyperbolic with one-dimensional neutral center. We prove that the center foliation is given by a topological Anosov flow which is topologically equivalent to <inline-formula><tex-math id="M4">\begin{document}$ \phi_t $\end{document}</tex-math></inline-formula>. We also prove that for the original example constructed by Bonatti–Parwani–Potrie, the center stable and center unstable foliations are robustly complete.</p>


2019 ◽  
Vol 40 (9) ◽  
pp. 2349-2367
Author(s):  
VERÓNICA DE MARTINO ◽  
SANTIAGO MARTINCHICH

Let $f:M\rightarrow M$ be a dynamically coherent partially hyperbolic diffeomorphism whose center foliation has all its leaves compact. We prove that if the unstable bundle of $f$ is one-dimensional, then the volume of center leaves must be bounded in $M$.


2011 ◽  
Vol 54 (4) ◽  
pp. 676-679 ◽  
Author(s):  
Andy Hammerlindl

AbstractWe show that a partially hyperbolic diffeomorphism is plaque expansive (a form of structural stability for its center foliation) if the strong stable and unstable foliations are quasi-isometric in the universal cover. In particular, all partially hyperbolic diffeomorphisms on the 3-torus are plaque expansive.


2017 ◽  
Vol 39 (2) ◽  
pp. 500-530
Author(s):  
WEISHENG WU

We generalize the notion of Schmidt games to the setting of the general Caratheódory construction. The winning sets for such generalized Schmidt games usually have large corresponding Caratheódory dimensions (e.g., Hausdorff dimension and topological entropy). As an application, we show that for every $C^{1+\unicode[STIX]{x1D703}}$-partially hyperbolic diffeomorphism $f:M\rightarrow M$ satisfying certain technical conditions, the topological entropy of the set of points with non-dense forward orbits is bounded below by the unstable metric entropy (in the sense of Ledrappier–Young) of certain invariant measures. This also gives a unified proof of the fact that the topological entropy of such a set is equal to the topological entropy of $f$, when $f$ is a toral automorphism or the time-one map of a certain non-quasiunipotent homogeneous flow.


2014 ◽  
Vol 35 (2) ◽  
pp. 412-430 ◽  
Author(s):  
HUYI HU ◽  
YUNHUA ZHOU ◽  
YUJUN ZHU

AbstractA partially hyperbolic diffeomorphism $f$ has the quasi-shadowing property if for any pseudo orbit $\{x_{k}\}_{k\in \mathbb{Z}}$, there is a sequence of points $\{y_{k}\}_{k\in \mathbb{Z}}$ tracing it in which $y_{k+1}$ is obtained from $f(y_{k})$ by a motion ${\it\tau}$ along the center direction. We show that any partially hyperbolic diffeomorphism has the quasi-shadowing property, and if $f$ has a $C^{1}$ center foliation then we can require ${\it\tau}$ to move the points along the center foliation. As applications, we show that any partially hyperbolic diffeomorphism is topologically quasi-stable under $C^{0}$-perturbation. When $f$ has a uniformly compact $C^{1}$ center foliation, we also give partially hyperbolic diffeomorphism versions of some theorems which hold for uniformly hyperbolic systems, such as the Anosov closing lemma, the cloud lemma and the spectral decomposition theorem.


2016 ◽  
Vol 38 (1) ◽  
pp. 384-400 ◽  
Author(s):  
RAÚL URES ◽  
CARLOS H. VÁSQUEZ

It is well known that it is possible to construct a partially hyperbolic diffeomorphism on the 3-torus in a similar way to Kan’s example. It has two hyperbolic physical measures with intermingled basins supported on two embedded tori with Anosov dynamics. A natural question is how robust is the intermingled basin phenomenon for diffeomorphisms defined on boundaryless manifolds? In this work we study partially hyperbolic diffeomorphisms on the 3-torus and show that the intermingled basin phenomenon is not robust.


2021 ◽  
pp. 1-25
Author(s):  
SHAOBO GAN ◽  
YI SHI ◽  
DISHENG XU ◽  
JINHUA ZHANG

Abstract In this paper, we study the centralizer of a partially hyperbolic diffeomorphism on ${\mathbb T}^3$ which is homotopic to an Anosov automorphism, and we show that either its centralizer is virtually trivial or such diffeomorphism is smoothly conjugate to its linear part.


2008 ◽  
Vol 28 (3) ◽  
pp. 843-862 ◽  
Author(s):  
YONGXIA HUA ◽  
RADU SAGHIN ◽  
ZHIHONG XIA

AbstractWe consider partially hyperbolic diffeomorphisms on compact manifolds. We define the notion of the unstable and stable foliations stably carrying some unique non-trivial homologies. Under this topological assumption, we prove the following two results: if the center foliation is one-dimensional, then the topological entropy is locally a constant; and if the center foliation is two-dimensional, then the topological entropy is continuous on the set of all $C^{\infty }$ diffeomorphisms. The proof uses a topological invariant we introduced, Yomdin’s theorem on upper semi-continuity, Katok’s theorem on lower semi-continuity for two-dimensional systems, and a refined Pesin–Ruelle inequality we proved for partially hyperbolic diffeomorphisms.


2018 ◽  
Vol 40 (4) ◽  
pp. 1083-1107
Author(s):  
WEISHENG WU

Let$g:M\rightarrow M$be a$C^{1+\unicode[STIX]{x1D6FC}}$-partially hyperbolic diffeomorphism preserving an ergodic normalized volume on$M$. We show that, if$f:M\rightarrow M$is a$C^{1+\unicode[STIX]{x1D6FC}}$-Anosov diffeomorphism such that the stable subspaces of$f$and$g$span the whole tangent space at some point on$M$, the set of points that equidistribute under$g$but have non-dense orbits under$f$has full Hausdorff dimension. The same result is also obtained when$M$is the torus and$f$is a toral endomorphism whose center-stable subspace does not contain the stable subspace of$g$at some point.


Sign in / Sign up

Export Citation Format

Share Document