scholarly journals Effective mixing and counting in Bruhat–Tits trees

2016 ◽  
Vol 38 (1) ◽  
pp. 257-283
Author(s):  
SANGHOON KWON

Let ${\mathcal{T}}$ be a locally finite tree, $\unicode[STIX]{x1D6E4}$ be a discrete subgroup of $\,\operatorname{Aut}\,({\mathcal{T}})$ and $\widetilde{F}$ be a $\unicode[STIX]{x1D6E4}$-invariant potential. Suppose that the length spectrum of $\unicode[STIX]{x1D6E4}$ is not arithmetic. In this case, we prove the exponential mixing property of the geodesic translation map $\unicode[STIX]{x1D719}:\unicode[STIX]{x1D6E4}\backslash S{\mathcal{T}}\rightarrow \unicode[STIX]{x1D6E4}\backslash S{\mathcal{T}}$ with respect to the measure $m_{\unicode[STIX]{x1D6E4},F}^{\unicode[STIX]{x1D708}^{-},\unicode[STIX]{x1D708}^{+}}$ under the assumption that $\unicode[STIX]{x1D6E4}$ is full and $(\unicode[STIX]{x1D6E4},\widetilde{F})$ has a weighted spectral gap. We also obtain the effective formula for the number of $\unicode[STIX]{x1D6E4}$-orbits with weights in a Bruhat–Tits tree ${\mathcal{T}}$ of an algebraic group.

10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.


2018 ◽  
Vol 19 (4) ◽  
pp. 1031-1091
Author(s):  
Thierry Stulemeijer

Given a locally finite leafless tree $T$, various algebraic groups over local fields might appear as closed subgroups of $\operatorname{Aut}(T)$. We show that the set of closed cocompact subgroups of $\operatorname{Aut}(T)$ that are isomorphic to a quasi-split simple algebraic group is a closed subset of the Chabauty space of $\operatorname{Aut}(T)$. This is done via a study of the integral Bruhat–Tits model of $\operatorname{SL}_{2}$ and $\operatorname{SU}_{3}^{L/K}$, that we carry on over arbitrary local fields, without any restriction on the (residue) characteristic. In particular, we show that in residue characteristic $2$, the Tits index of simple algebraic subgroups of $\operatorname{Aut}(T)$ is not always preserved under Chabauty limits.


2010 ◽  
Vol 83 (1) ◽  
pp. 96-107
Author(s):  
BOUBAKARI IBRAHIMOU ◽  
OMER YAYENIE

AbstractIt is well known that if a convex hyperbolic polygon is constructed as a fundamental domain for a subgroup of SL(2,ℝ), then its translates by the group form a locally finite tessellation and its side-pairing transformations form a system of generators for the group. Such a hyperbolically convex fundamental domain for any discrete subgroup can be obtained by using Dirichlet’s and Ford’s polygon constructions. However, these two results are not well adapted for the actual construction of a hyperbolically convex fundamental domain due to their nature of construction. A third, and most important and practical, method of obtaining a fundamental domain is through the use of a right coset decomposition as described below. If Γ2 is a subgroup of Γ1 such that Γ1=Γ2⋅{L1,L2,…,Lm} and 𝔽 is the closure of a fundamental domain of the bigger group Γ1, then the set is a fundamental domain of Γ2. One can ask at this juncture, is it possible to choose the right coset suitably so that the set ℛ is a convex hyperbolic polygon? We will answer this question affirmatively for Hecke modular groups.


2021 ◽  
pp. 1-13
Author(s):  
HAO WU

Abstract Let f be a Hénon–Sibony map, also known as a regular polynomial automorphism of $\mathbb {C}^k$ , and let $\mu $ be the equilibrium measure of f. In this paper we prove that $\mu $ is exponentially mixing for plurisubharmonic observables.


2004 ◽  
Vol 70 (2) ◽  
pp. 257-266
Author(s):  
Lisa Carbone

A uniform tree is a tree that covers a finite connected graph. Let X be any locally finite tree. Then G = Aut(X) is a locally compact group. We show that if X is uniform, and if the restriction of G to the unique minimal G-invariant subtree X0 ⊆ X is not discrete then G contains non-uniform lattices; that is, discrete subgroups Γ for which Γ/G is not compact, yet carries a finite G-invariant measure. This proves a conjecture of Bass and Lubotzky for the existence of non-uniform lattices on uniform trees.


1966 ◽  
Vol 27 (1) ◽  
pp. 279-322 ◽  
Author(s):  
Takashi Ono

Let G be a connected semi-simple algebraic group defined over Q and let Γ be a discrete subgroup of GR (the subgroup of G consisting of points rational over R) such that Γ\GR is compact. The main purpose of the present paper is to prove that for a certain type of group G there exists an invariant algebraic differential from ω on G of highest degree defined over Q such that


1997 ◽  
Vol 17 (4) ◽  
pp. 869-884 ◽  
Author(s):  
SA'AR HERSONSKY ◽  
JOHN HUBBARD

Let $T$ be a locally finite simplicial tree and let $\Gamma\subset{\rm Aut}(T)$ be a finitely generated discrete subgroup. We obtain an explicit formula for the critical exponent of the Poincaré series associated with $\Gamma$, which is also the Hausdorff dimension of the limit set of $\Gamma$; this uses a description due to Lubotzky of an appropriate fundamental domain for finite index torsion-free subgroups of $\Gamma$. Coornaert, generalizing work of Sullivan, showed that the limit set is of finite positive measure in its dimension; we give a new proof of this result. Finally, we show that the critical exponent is locally constant on the space of deformations of $\Gamma$.


2021 ◽  
Vol 58 (1) ◽  
pp. 83-105
Author(s):  
Oren Mangoubi ◽  
Natesh Pillai ◽  
Aaron Smith

AbstractA family $\{Q_{\beta}\}_{\beta \geq 0}$ of Markov chains is said to exhibit metastable mixing with modes$S_{\beta}^{(1)},\ldots,S_{\beta}^{(k)}$ if its spectral gap (or some other mixing property) is very close to the worst conductance $\min\!\big(\Phi_{\beta}\big(S_{\beta}^{(1)}\big), \ldots, \Phi_{\beta}\big(S_{\beta}^{(k)}\big)\big)$ of its modes for all large values of $\beta$. We give simple sufficient conditions for a family of Markov chains to exhibit metastability in this sense, and verify that these conditions hold for a prototypical Metropolis–Hastings chain targeting a mixture distribution. The existing metastability literature is large, and our present work is aimed at filling the following small gap: finding sufficient conditions for metastability that are easy to verify for typical examples from statistics using well-studied methods, while at the same time giving an asymptotically exact formula for the spectral gap (rather than a bound that can be very far from sharp). Our bounds from this paper are used in a companion paper (O. Mangoubi, N. S. Pillai, and A. Smith, arXiv:1808.03230) to compare the mixing times of the Hamiltonian Monte Carlo algorithm and a random walk algorithm for multimodal target distributions.


Sign in / Sign up

Export Citation Format

Share Document