scholarly journals The Elliptic Tail Kernel

Author(s):  
Cesar Cuenca ◽  
Vadim Gorin ◽  
Grigori Olshanski

Abstract We introduce and study a new family of $q$-translation-invariant determinantal point processes on the two-sided $q$-lattice. We prove that these processes are limits of the $q$–$zw$ measures, which arise in the $q$-deformation of harmonic analysis on $U(\infty )$, and express their correlation kernels in terms of Jacobi theta functions. As an application, we show that the $q$–$zw$ measures are diffuse. Our results also hint at a link between the two-sided $q$-lattice and rows/columns of Young diagrams.

2020 ◽  
pp. 1-14
Author(s):  
SHOTA OSADA

Abstract We prove the Bernoulli property for determinantal point processes on $ \mathbb{R}^d $ with translation-invariant kernels. For the determinantal point processes on $ \mathbb{Z}^d $ with translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif [Stationary determinantal processes: phase multiplicity, bernoullicity, and domination. Duke Math. J.120 (2003), 515–575] and Shirai and Takahashi [Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic properties. Ann. Probab.31 (2003), 1533–1564]. We prove its continuum version. For this purpose, we also prove the Bernoulli property for the tree representations of the determinantal point processes.


Author(s):  
Pierre van Moerbeke

This article presents a list of algebraic, combinatorial, and analytic mechanisms that give rise to determinantal point processes. Determinantal point processes have been used in random matrix theory (RMT) since the early 1960s. As a separate class, determinantal processes were first used to model fermions in thermal equilibrium and the term ‘fermion’ point processes were adopted. The article first provides an overview of the generalities associated with determinantal point processes before discussing loop-free Markov chains, that is, the trajectories of the Markov chain do not pass through the same point twice almost surely. It then considers the measures given by products of determinants, namely, biorthogonal ensembles. An especially important subclass of biorthogonal ensembles consists of orthogonal polynomial ensembles. The article also describes L-ensembles, a general construction of determinantal point processes via the Fock space formalism, dimer models, uniform spanning trees, Hermitian correlation kernels, and Pfaffian point processes.


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
E. V. Ferapontov ◽  
M. V. Pavlov ◽  
Lingling Xue

AbstractWe investigate the integrability of Euler–Lagrange equations associated with 2D second-order Lagrangians of the form $$\begin{aligned} \int f(u_{xx},u_{xy},u_{yy})\ \mathrm{d}x\mathrm{d}y. \end{aligned}$$ ∫ f ( u xx , u xy , u yy ) d x d y . By deriving integrability conditions for the Lagrangian density f, examples of integrable Lagrangians expressible via elementary functions, Jacobi theta functions and dilogarithms are constructed. A link of second-order integrable Lagrangians to WDVV equations is established. Generalisations to 3D second-order integrable Lagrangians are also discussed.


2021 ◽  
Vol 178 ◽  
pp. 115025
Author(s):  
Chunxia Zhang ◽  
Junmin Liu ◽  
Guanwei Wang ◽  
Guanghai Li

2021 ◽  
Vol 58 (2) ◽  
pp. 469-483
Author(s):  
Jesper Møller ◽  
Eliza O’Reilly

AbstractFor a determinantal point process (DPP) X with a kernel K whose spectrum is strictly less than one, André Goldman has established a coupling to its reduced Palm process $X^u$ at a point u with $K(u,u)>0$ so that, almost surely, $X^u$ is obtained by removing a finite number of points from X. We sharpen this result, assuming weaker conditions and establishing that $X^u$ can be obtained by removing at most one point from X, where we specify the distribution of the difference $\xi_u: = X\setminus X^u$. This is used to discuss the degree of repulsiveness in DPPs in terms of $\xi_u$, including Ginibre point processes and other specific parametric models for DPPs.


Author(s):  
Jack Poulson

Determinantal point processes (DPPs) were introduced by Macchi (Macchi 1975 Adv. Appl. Probab. 7 , 83–122) as a model for repulsive (fermionic) particle distributions. But their recent popularization is largely due to their usefulness for encouraging diversity in the final stage of a recommender system (Kulesza & Taskar 2012 Found. Trends Mach. Learn. 5 , 123–286). The standard sampling scheme for finite DPPs is a spectral decomposition followed by an equivalent of a randomly diagonally pivoted Cholesky factorization of an orthogonal projection, which is only applicable to Hermitian kernels and has an expensive set-up cost. Researchers Launay et al. 2018 ( http://arxiv.org/abs/1802.08429 ); Chen & Zhang 2018 NeurIPS ( https://papers.nips.cc/paper/7805-fast-greedy-map-inference-for-determinantal-point-process-to-improve-recommendation-diversity.pdf ) have begun to connect DPP sampling to LDL H factorizations as a means of avoiding the initial spectral decomposition, but existing approaches have only outperformed the spectral decomposition approach in special circumstances, where the number of kept modes is a small percentage of the ground set size. This article proves that trivial modifications of LU and LDL H factorizations yield efficient direct sampling schemes for non-Hermitian and Hermitian DPP kernels, respectively. Furthermore, it is experimentally shown that even dynamically scheduled, shared-memory parallelizations of high-performance dense and sparse-direct factorizations can be trivially modified to yield DPP sampling schemes with essentially identical performance. The software developed as part of this research, Catamari ( hodgestar.com/catamari ) is released under the Mozilla Public License v.2.0. It contains header-only, C++14 plus OpenMP 4.0 implementations of dense and sparse-direct, Hermitian and non-Hermitian DPP samplers. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.


Sign in / Sign up

Export Citation Format

Share Document