scholarly journals The Robustness of Land Equivalent Ratio as a Measure of Yield Advantage of Multi-Crop Systems over Monocultures

2022 ◽  
pp. 1-16
Author(s):  
Debal Deb ◽  
Sreejata Dutta
2015 ◽  
Vol 12 (2) ◽  
pp. 52-62 ◽  
Author(s):  
VK Choudhary

Maize (Zea mays L.) being a widely space crop were tried with different combinations of legumes cowpea (Vigna unguiculata L. Walp), frenchbean (Phaseolus vulgaris L.) and blackgram (Vigna mungo L.) as intercrops at different planting geometry to find out their suitability during 2009, 2010 and 2011 at eastern Himalayan, Arunachal Pradesh, India. Three experiments were carried out in sequence to identify suitable planting geometry to accommodate intercrops, screening best legume crops and subsequently best performed row ratio of maize and legume crops were intercropped in third experiment with 1:1, 1:2 and 1:5 row proportions. Sole maize gave the maximum grain yield with 4571.1 kg ha-1, whereas, stover yield was highest with maize-cowpea intercrop at 1:2 row ratios (8013.4 kg ha-1) and 57.1 kg ha-1 day-1 production efficiency followed by frenchbean and least with blackgram. Competition indices like land equivalent ratio (LER) was highest with 1:2 row ratio of maize-frenchbean (1.66), land equivalent coefficient (0.67). But, highest area time equivalent ratio (ATER) noticed with 1:2 row ratio of maizeblackgram (1.47). Relative crowding coefficient (K) and competition ratio were noticed higher with 1:2 row ratio of maize-cowpea, whereas, cowpea combinations has better crowding coefficient and blackgram combinations registered better competitiveness. Monetary advantage index (MAI) was 6433.2 with 1:2 row ratio of maize-blackgram followed by maize-cowpea and lowest with maize-frenchbean with the trend of 1:2>1:5>1:1 row ratios. DOI: http://dx.doi.org/10.3329/sja.v12i2.21916 SAARC J. Agri., 12(2): 52-62 (2014)


2014 ◽  
Vol 10 (4) ◽  
pp. 82-85
Author(s):  
E.N. Ekaka-A ◽  
◽  
N.E.S Lale ◽  
C.C Wokocha

10.5109/24355 ◽  
2000 ◽  
Vol 45 (1) ◽  
pp. 39-48
Author(s):  
Faruque Ahmed ◽  
Osamu Hirota ◽  
You Yamada ◽  
Tomokazu Haraguchi ◽  
Masaru Matsumoto ◽  
...  

1999 ◽  
Vol 3 (1) ◽  
pp. 175-176
Author(s):  
Iqtidar Hussain ◽  
Shakeel Ahmad Jatoi . ◽  
Obaidullah Sayal . ◽  
Muhammad Safdar Balo .

Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 147 ◽  
Author(s):  
Diana-Maria Seserman ◽  
Dirk Freese ◽  
Anita Swieter ◽  
Maren Langhof ◽  
Maik Veste

The alley-cropping systems (ACSs), which integrate parallel tree strips at varying distances on an agricultural field can result, complementarity of resource use, in an increased land-use efficiency. Practitioners’ concerns have been directed towards the productivity of such systems given a reduced area covered by agricultural crops. The land equivalent ratio (LER) serves as a valuable productivity indicator of yield performance and land-use efficiency in ACSs, as it compares the yields achieved in monocultures to those from ACSs. Consequently, the objective of this combined experimental and simulation study was to assess the tree- and crop-yields and to derive the LER and gross energy yield for two temperate ACSs in Germany under different design scenarios, i.e., tree arrangements (lee- or wind-ward) and ratios of tree area to crop area. Both LER and gross energy yields resulted in a convex curve where the maximum values were achieved when either the tree or crop component was dominant (>75% of the land area) and minimum when these components shared similar proportions of land area. The implications of several design scenarios have been discussed in order to improve the decision-making, optimization, and adaptation of the design of ACSs with respect to site-specific characteristics.


Agriculture ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 88
Author(s):  
Rodolfo Gustavo Teixeira Ribas ◽  
Arthur Bernardes Cecílio Filho ◽  
Alexson Filgueiras Dutra ◽  
José Carlos Barbosa ◽  
Glauco de Souza Rolim

Lettuce and cucumber are two important vegetables cultivated in greenhouses. Intercropping can increase the yield without increasing the demands for inputs. A more efficient use of resources in production systems can reduce costs and environmental impacts. We evaluated the land equivalent ratio (LER) of intercropping cucumber and lettuce as a function of the cucumber population. An experiment was conducted in a greenhouse to evaluate the cucumber population density (100, 85, 70, and 55% of 2.35 plants m−2) and two lettuce cultivars, ‘Lucy Brown’ and ‘Vanda’. The cucumber population density affected the amount of photosynthetically active radiation that reached the lettuce. The higher the density, the lower the total fresh mass and yield of the two lettuce cultivars. Fruit yield per plant and per area decreased and increased, respectively, as the density increased. LER was highest when cucumber was intercropped with ‘Vanda’ lettuce. LER increased with the density of ‘Vanda’ but decreased for ‘Lucy Brown’. ‘Lucy Brown’ produced commercial traits (head formation) only at the lowest density (55%). The presence of lettuce did not affect the cucumber yield per plant or per area. The intercropped system used land more efficiently than monocultured crops of lettuce and cucumber, with better results for ‘Vanda’ than ‘Lucy Brown’.


Sign in / Sign up

Export Citation Format

Share Document