land use efficiency
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 203)

H-INDEX

23
(FIVE YEARS 10)

2022 ◽  
Vol 120 ◽  
pp. 102503
Author(s):  
Saurav Chakraborty ◽  
Indranil Maity ◽  
Hashem Dadashpoor ◽  
Josef Novotnẏ ◽  
Suranjana Banerji

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Xinhua Zhao ◽  
Qiqi Dong ◽  
Yi Han ◽  
Kezhao Zhang ◽  
Xiaolong Shi ◽  
...  

Abstract Background Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. Results The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. Conclusion Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Jinfeng Ma ◽  
Weifeng Li ◽  
Zhao Wang ◽  
Liang He ◽  
Lijian Han

Although urban agglomerations are vital sites for national economic development, comprehensive multidimensional investigations of their performance are lacking. Accordingly, we examined land use efficiency from multiple perspectives in two of the earliest developed and most advanced urban agglomerations in China, the Beijing–Tianjin–Hebei (BTH) region and the Yangtze River Delta (YRD), using different metrics, including trans-regional drivers of the spatial allocation of construction land. We found that: (1) The land use efficiency of urban agglomerations was context dependent. Whereas it was higher in the Beijing–Tianjin–Hebei region for population density per unit area of construction land than in the Yangtze River Delta region, the opposite was true for gross domestic production. Thus, a single aspect did not fully reflect the land use efficiency of urban agglomerations. (2) The land use efficiency of the two urban agglomerations was also scale dependent, and in the Yangtze River Delta region, the use of multiple metrics induced variations between aggregate and local measures. Median values for the land use efficiency of cities within an urban agglomeration were the most representative for comparative purposes. (3) The drivers of the spatial allocation of construction land were trans-regional. At the regional scale, most topographical factors were restrictive. Major regional transport networks significantly influenced the occurrence of construction land near them. Dominant cities and urban areas within each city exerted remote effects on non-dominant cities and rural areas. In principle, the median value can be considered a promising metric for assessing an urban agglomeration’s performance. We suggest that stringent management of land use in areas located along regional rail tracks/roadways may promote sustainable land use.


Author(s):  
G Biruk ◽  
T Awoke ◽  
T Anteneh

Field experiment was carried out during the 2017-18 cropping season at Kako, Bena-Ttsemay woreda, South Omo zone, Southern Ethiopia to determine the effect of intercropping of maize and cowpea on the yield, land use efficiency and profitability of both crops. The experiment consisted of 4 treatments (sole maize, sole cowpea, one row maize to one row cowpea and one row maize to two-row cowpea) and laid in RCBD in four replications. Intercropping of one row maize to one row cowpea and one row maize to two-row cowpea, resulted in 55.8% and 27.9% greater land use efficiency than for either crop grown alone. The highest MAI was obtained by growing one row of maize to one row of cowpea (11563.17) followed by one row maize to two-rows of cowpea (6783.50).Based on the present finding, intercropping of one row maize and one row cowpea more economic advantage than the other crop combination or grown alone. Therefore, intercropping of one row maize to one row cowpea is an advantageous to farmers in the study area since it would provide additional crop yield with the same piece of land and more profitable related to cost benefit. Int. J. Agril. Res. Innov. Tech. 11(2): 147-150, Dec 2021


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil

Intercropping maize and forage cowpea is a widely proposed strategy to improve land use efficiency, and maximize the economic value of the farming system, especially in developing countries with restricted resources. The current study was carried out during the successive summers of 2020 and 2021 in Northern Egypt. The main objective was to evaluate the effect of three N schedules (NS1, NS2, NS3), when three different maize–cowpea intercropping patterns (IP1, IP2, IP3) were applied, on the grain yield of maize, forage yield and quality of forage cowpea. In addition, yield gain and land use efficiency were evaluated using the land equivalent ratio (LER) and dry matter equivalent ratio (DMER) indices. Results revealed that the intercropping patterns that provided wider spacings for the component crops and reduced the competition between them, mainly IP3, resulted in the best performances for the two crops. This was clear for maize ear and grain yields, 100-grain weight and harvest index, in addition to cowpea fresh and dry forage yields, crude protein and non-fiber carbohydrates of the three cuts. Regarding the applied N schedules, NS1 which included the application of a N starter dose with sowing proved to be the most efficient schedule that led to the best performance for both crops. Maize produced 9.07 t ha−1 grain yield under IP3 and NS1. In addition, the application of IP3 resulted in the highest significant cowpea dry forage yield (DFY), with the highest crude protein (CP) content. The DFY of cuts 1, 2, and 3 amounted to 1.27, 0.45, and 0.24 t ha−1, while the CP content for the three respective cuts reached 159.49, 157.96, and 148.91 g kg−1. Nonetheless, NS1 produced a reasonable amount of DFY with high CP content. It is recommended to follow the third proposed intercropping pattern (IP3) and to include a nitrogen starter dose (NS1) in the fertilization scheme to ensure highest productivity from the intercropped maize and forage cowpea.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2569
Author(s):  
Eduardo Augusto Girardi ◽  
João Gabriel Panegossi Sola ◽  
Marcelo da Silva Scapin ◽  
Alécio Souza Moreira ◽  
Renato Beozzo Bassanezi ◽  
...  

The rise in the productivity of sweet orange in Brazil has been related to the use of superior rootstocks and higher tree density, among other factors. In order to investigate whether the cropping system and the land use efficiency would benefit from more intensive cultivation, the performance of Valencia sweet orange was evaluated over nine years on four rootstocks, which induced contrasting vigor, at 513, 696 and 1000 trees·ha−1. Agronomic Institute of Campinas (IAC) 1697 and IAC 1710 citrandarins, and diploid and allotetraploid (4×) Swingle citrumelos were classified as semi-dwarfing, super-standard, standard, and dwarfing rootstocks, respectively. The fruit yield per tree was decreased at higher tree densities, notably for more vigorous rootstocks. Conversely, the cumulative productivity was increased over the evaluation period by 27% at 1000 trees·ha−1, irrespective of the rootstock, and the most vigorous rootstock resulted in 2.5 times higher production than the dwarfing one on average. Most fruit quality parameters were seldom influenced by the tree density, while the rootstock was a decisive factor in improving the quality and the soluble solids content. Dwarfing rootstocks allowed for harvesting 17% more fruit per minute by manual pickers. Because the tree row volume per area is lower with such rootstocks, even at higher tree density, spray volume can be reduced, although appropriate equipment should be developed for better spray coverage on smaller trees. Nine years after planting under strict vector control, the cumulative incidence of huanglongbing-symptomatic trees on IAC 1710 was double that on Swingle 4×. Taken together, the results suggested that the land use efficiency in the citrus industry can be further improved by planting vigorous rootstocks at moderate to high tree densities. Nevertheless, obtaining highly productive semi-dwarfing and dwarfing rootstocks is the sine qua non for making high-density pedestrian sweet orange orchards more profitable.


2021 ◽  
Vol 13 (24) ◽  
pp. 13612
Author(s):  
Katarzyna Zielonko-Jung ◽  
Marta Poćwierz ◽  
Robert Idem

This paper addresses wind conditions in urban building development at the pedestrian level. The article aimed to identify aerodynamic phenomena around three types of multi-family housing developments with different forms and the same urban parameters of building development density (high density was taken into account). The aim of the research was mainly to achieve qualitative results that would lead to understanding fundamental processes and phenomena. Wind tunnel experimental studies were conducted on physical models at a scale of 1: 400 using visualization and erosion methods. These experiments yielded data regarding the arrangement of airflow directions and changes in airflow velocity, expressed as the amplification coefficient (α), the occurrence of which was caused by the presence of buildings. An analysis was conducted concerning wind conditions that constitute pedestrian comfort and influence the possibility for ventilation of spaces between buildings for the three selected models. The research results were compared, and an attempt was made to assess the most beneficial and the least favorable building development types in this respect.


2021 ◽  
Vol 13 (24) ◽  
pp. 13518
Author(s):  
Chaopeng Li ◽  
Guoyin Cai ◽  
Zhongchang Sun

Sustainable Development Goal (SDG) target 11.3 is to enhance inclusive and sustainable urbanisation and capacity for participatory, integrated, and sustainable human settlement planning and management in all countries by 2030. Within that goal, the indicator SDG 11.3.1 is defined as the ratio of land consumption rate to population growth rate (LCRPGR). This ratio is primarily used to measure urban land-use efficiency and reveal the relationship between urban land consumption and population growth. The LCRPGR indicator is aimed at representing overall urban land-use efficiency. This study added compactness, urban expansion speed, and urban expansion intensity to better reflect the impact of built-up area changes on the overall urban land-use efficiency. In addition, this study combined LCRPGR and the land consumption per capita rate (LCPC) to comprehensively analyse the relationship between land consumption and population growth in existing built urban areas, expanded built urban areas, and total built areas. This study employed three years of urban built-up and population data for 2010, 2015, and 2020 for 338 cities along the Belt and Road region to analyse land-use efficiency. The results show that the average LCRPGR for the period 2010–2015 was 1.01, which is close to the recommended ideal LCRPGR value of 1.0 in the United Nations Human Settlements Programme. For 2015–2020, the LCRPGR was 0.71, indicating that the overall urban land consumption in the study area decreased. This is also supported by the fact that the urban expansion intensity in 2020 was weaker than that in 2015. In addition, according to research on the tendency of changes in the entire urban built-up area, the smaller the urban population, the slower the urban expansion speed, the smaller the compactness, and the increasingly complex the urban borders. In cities where the overall LCRPGR is far from the ideal value of 1, the entire built-up area is divided into existing and expanded urban regions. It was found that the average LCPC value in expanded built-up areas was higher than that of existing built-up areas, showing that as cities developed, the LCPC of the newly developed urban areas was greater than that of existing built-up areas. Meanwhile, the LCPC in the expanded built-up areas showed a decreasing trend over time from 2010 to 2015 to 2020, indicating that land use in the expanded built-up regions tended to be efficient. These findings provide helpful information in decision making for balancing urban land consumption with population growth.


Sign in / Sign up

Export Citation Format

Share Document