DERIVED HECKE ALGEBRA AND COHOMOLOGY OF ARITHMETIC GROUPS
We describe a graded extension of the usual Hecke algebra: it acts in a graded fashion on the cohomology of an arithmetic group $\unicode[STIX]{x1D6E4}$ . Under favorable conditions, the cohomology is freely generated in a single degree over this graded Hecke algebra. From this construction we extract an action of certain $p$ -adic Galois cohomology groups on $H^{\ast }(\unicode[STIX]{x1D6E4},\mathbf{Q}_{p})$ , and formulate the central conjecture: the motivic $\mathbf{Q}$ -lattice inside these Galois cohomology groups preserves $H^{\ast }(\unicode[STIX]{x1D6E4},\mathbf{Q})$ .