scholarly journals SERRE WEIGHTS AND WILD RAMIFICATION IN TWO-DIMENSIONAL GALOIS REPRESENTATIONS

2016 ◽  
Vol 4 ◽  
Author(s):  
LASSINA DEMBÉLÉ ◽  
FRED DIAMOND ◽  
DAVID P. ROBERTS

A generalization of Serre’s Conjecture asserts that if $F$ is a totally real field, then certain characteristic $p$ representations of Galois groups over $F$ arise from Hilbert modular forms. Moreover, it predicts the set of weights of such forms in terms of the local behaviour of the Galois representation at primes over $p$. This characterization of the weights, which is formulated using $p$-adic Hodge theory, is known under mild technical hypotheses if $p>2$. In this paper we give, under the assumption that $p$ is unramified in $F$, a conjectural alternative description for the set of weights. Our approach is to use the Artin–Hasse exponential and local class field theory to construct bases for local Galois cohomology spaces in terms of which we identify subspaces that should correspond to ones defined using $p$-adic Hodge theory. The resulting conjecture amounts to an explicit description of wild ramification in reductions of certain crystalline Galois representations. It enables the direct computation of the set of Serre weights of a Galois representation, which we illustrate with numerical examples. A proof of this conjecture has been announced by Calegari, Emerton, Gee and Mavrides.

2008 ◽  
Vol 8 (1) ◽  
pp. 99-177 ◽  
Author(s):  
Frank Calegari ◽  
Barry Mazur

AbstractLet K be an arbitrary number field, and let ρ : Gal($\math{\bar{K}}$/K) → GL2(E) be a nearly ordinary irreducible geometric Galois representation. In this paper, we study the nearly ordinary deformations of ρ. When K is totally real and ρ is modular, results of Hida imply that the nearly ordinary deformation space associated to ρ contains a Zariski dense set of points corresponding to ‘automorphic’ Galois representations. We conjecture that if K is not totally real, then this is never the case, except in three exceptional cases, corresponding to: (1) ‘base change’, (2) ‘CM’ forms, and (3) ‘even’ representations. The latter case conjecturally can only occur if the image of ρ is finite. Our results come in two flavours. First, we prove a general result for Artin representations, conditional on a strengthening of the Leopoldt Conjecture. Second, when K is an imaginary quadratic field, we prove an unconditional result that implies the existence of ‘many’ positive-dimensional components (of certain deformation spaces) that do not contain infinitely many classical points. Also included are some speculative remarks about ‘p-adic functoriality’, as well as some remarks on how our methods should apply to n-dimensional representations of Gal($\math{\bar{\QQ}}$/ℚ) when n > 2.


2017 ◽  
Vol 153 (9) ◽  
pp. 1769-1778 ◽  
Author(s):  
Fred Diamond ◽  
Payman L Kassaei

We consider mod $p$ Hilbert modular forms associated to a totally real field of degree $d$ in which $p$ is unramified. We prove that every such form arises by multiplication by partial Hasse invariants from one whose weight (a $d$-tuple of integers) lies in a certain cone contained in the set of non-negative weights, answering a question of Andreatta and Goren. The proof is based on properties of the Goren–Oort stratification on mod $p$ Hilbert modular varieties established by Goren and Oort, and Tian and Xiao.


2018 ◽  
Vol 19 (2) ◽  
pp. 281-306 ◽  
Author(s):  
Mladen Dimitrov ◽  
Gabor Wiese

The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$. This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$, namely via ‘partial’ Frobenius operators.


2014 ◽  
Vol 14 (3) ◽  
pp. 639-672 ◽  
Author(s):  
Fred Diamond ◽  
David Savitt

Let $F$ be a totally real field, and $v$ a place of $F$ dividing an odd prime $p$. We study the weight part of Serre’s conjecture for continuous totally odd representations $\overline{{\it\rho}}:G_{F}\rightarrow \text{GL}_{2}(\overline{\mathbb{F}}_{p})$ that are reducible locally at $v$. Let $W$ be the set of predicted Serre weights for the semisimplification of $\overline{{\it\rho}}|_{G_{F_{v}}}$. We prove that, when $\overline{{\it\rho}}|_{G_{F_{v}}}$ is generic, the Serre weights in $W$ for which $\overline{{\it\rho}}$ is modular are exactly the ones that are predicted (assuming that $\overline{{\it\rho}}$ is modular). We also determine precisely which subsets of $W$ arise as predicted weights when $\overline{{\it\rho}}|_{G_{F_{v}}}$ varies with fixed generic semisimplification.


2016 ◽  
Vol 152 (7) ◽  
pp. 1476-1488 ◽  
Author(s):  
Ana Caraiani ◽  
Bao V. Le Hung

We compute the image of any choice of complex conjugation on the Galois representations associated to regular algebraic cuspidal automorphic representations and to torsion classes in the cohomology of locally symmetric spaces for $\text{GL}_{n}$ over a totally real field $F$.


2009 ◽  
Vol 145 (5) ◽  
pp. 1081-1113 ◽  
Author(s):  
Takeshi Saito

AbstractFor the p-adic Galois representation associated to a Hilbert modular form, Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a finite place not dividing p is compatible with the local Langlands correspondence. Under the same assumption, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also prove that the monodromy-weight conjecture holds for such representations.


Author(s):  
Fred Diamond

Abstract We carry out a thorough study of weight-shifting operators on Hilbert modular forms in characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified in the totally real field. In particular, we use the partial Hasse invariants and Kodaira–Spencer filtrations defined by Reduzzi and Xiao to improve on Andreatta and Goren’s construction of partial $\Theta $ -operators, obtaining ones whose effect on weights is optimal from the point of view of geometric Serre weight conjectures. Furthermore, we describe the kernels of partial $\Theta $ -operators in terms of images of geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial positivity result for minimal weights of mod p Hilbert modular forms.


2016 ◽  
Vol 59 (1) ◽  
pp. 11-25 ◽  
Author(s):  
DAVID LOEFFLER

AbstractWe show that the image of the adelic Galois representation attached to a non-CM modular form is open in the adelic points of a suitable algebraic subgroup of GL2 (defined by F. Momose). We also show a similar result for the adelic Galois representation attached to a finite set of modular forms.


1999 ◽  
Vol 1999 (509) ◽  
pp. 199-236 ◽  
Author(s):  
Gebhard Böckle

Abstract Given an absolutely irreducible Galois representation : GE → GLN (k), E a number field, k a finite field of characteristic l > 2, and a finite set of places Q of E containing all places above l and ∞ and all where ∞ ramifies, there have been defined many functors representing strict equivalence classes of deformations of such a representation, e.g. by Mazur or Wiles in [15] or [26], with various conditions on the behaviour of the deformations at the places in Q and with the condition that the deformations are unramified outside Q. Those functors are known to be representable. For as above, our goal is to present a rather general class of global deformation functors that satisfy local deformation conditions and to investigate for those, under what conditions the global deformation functor is determined by the local deformation functors. We will give precise conditions under which the local functors for all places in Q are sufficient to describe the global functor, first in a coarse form, then in a refined form using auxiliary primes as done by Taylor and Wiles in [24]. This has several consequences. The strongest is that one can derive ring theoretic results for the universal deformation space by Mazur if one uses results of Diamond and Wiles, cf. [11] and [26], and if one has a good understanding of all local situations. Furthermore it is easier to understand what happens under increasing the ramification as done by Boston and Ramakrishna in [6] and [20], [21]. Finally we shall reinterpret the results in the case of a tame representation by directly considering presentations of certain pro-l Galois groups and revisiting the prime-to-adjoint principle of Boston, cf. [5].


Sign in / Sign up

Export Citation Format

Share Document