scholarly journals Cohomological obstruction theory for Brauer classes and the period-index problem

Author(s):  
Benjamin Antieau

AbstractLet U be a connected noetherian scheme of finite étale cohomological dimension in which every finite set of points is contained in an affine open subscheme. Suppose that α is a class in H2(Uét,ℂm)tors. For each positive integer m, the K-theory of α-twisted sheaves is used to identify obstructions to α being representable by an Azumaya algebra of rank m2. The étale index of α, denoted eti(α), is the least positive integer such that all the obstructions vanish. Let per(α) be the order of α in H2(Uét,ℂm)tors. Methods from stable homotopy theory give an upper bound on the étale index that depends on the period of α and the étale cohomological dimension of U; this bound is expressed in terms of the exponents of the stable homotopy groups of spheres and the exponents of the stable homotopy groups of B(ℤ/(per(α))). As a corollary, if U is the spectrum of a field of finite cohomological dimension d, then , where [] is the integer part of , whenever per(α) is divided neither by the characteristic of k nor by any primes that are small relative to d.

2008 ◽  
Vol 39 (1) ◽  
pp. 75-83
Author(s):  
Liu Xiugui ◽  
Jin Yinglong

To determine the stable homotopy groups of spheres is one of the central problems in homotopy theory. Let $ A $ be the mod $ p $ Steenrod algebra and $S$ the sphere spectrum localized at an odd prime $ p $. In this article, it is proved that for $ p\geqslant 7 $, $ n\geqslant 4 $ and $ 3\leqslant s $, $ b_0 h_1 h_n \tilde{\gamma}_{s} \in Ext_A^{s+4,\ast}(\mathbb{Z}_p,\mathbb{Z}_p) $ is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element of order $ p $ in the stable homotopy groups of spheres $ \pi_{p^nq+sp^{2}q+(s+1)pq+(s-2)q-7}S $, where $ q=2(p-1 ) $.


2020 ◽  
Vol 117 (40) ◽  
pp. 24757-24763
Author(s):  
Daniel C. Isaksen ◽  
Guozhen Wang ◽  
Zhouli Xu

We discuss the current state of knowledge of stable homotopy groups of spheres. We describe a computational method using motivic homotopy theory, viewed as a deformation of classical homotopy theory. This yields a streamlined computation of the first 61 stable homotopy groups and gives information about the stable homotopy groups in dimensions 62 through 90. As an application, we determine the groups of homotopy spheres that classify smooth structures on spheres through dimension 90, except for dimension 4. The method relies more heavily on machine computations than previous methods and is therefore less prone to error. The main mathematical tool is the Adams spectral sequence.


1987 ◽  
Vol 101 (3) ◽  
pp. 477-485 ◽  
Author(s):  
Wen-Hsiung Lin

The classical Adams spectral sequence [1] has been an important tool in the computation of the stable homotopy groups of spheres . In this paper we make another contribution to this computation.


1987 ◽  
Vol 101 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Alan Robinson

We introduce a new construction in stable homotopy theory. If F and G are module spectra over a ring spectrum E, there is no well-known spectrum of E-module homomorphisms from F to G. Such a construction would not be homotopy invariant, and therefore would not serve much purpose. We show that, provided the rings and modules have A∞ structures, there is a spectrum RHomE(F, G) of derived module homomorphisms which has very pleasant properties. It is homotopy invariant, exact in each variable, and its homotopy groups form the abutment of a hypercohomology-type spectral sequence.


Sign in / Sign up

Export Citation Format

Share Document