open subscheme
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 33 (1) ◽  
pp. 97-140
Author(s):  
I. Panin ◽  
C. Walter

The quaternionic Grassmannian H Gr ⁡ ( r , n ) \operatorname {H Gr}(r,n) is the affine open subscheme of the usual Grassmannian parametrizing those 2 r 2r -dimensional subspaces of a 2 n 2n -dimensional symplectic vector space on which the symplectic form is nondegenerate. In particular, we have HP n = H Gr ⁡ ( 1 , n + 1 ) \operatorname {HP}^n = \operatorname {H Gr}(1,n+1) . For a symplectically oriented cohomology theory A A , including oriented theories but also the Hermitian K \operatorname {K} -theory, Witt groups, and algebraic symplectic cobordism, we have A ( HP n ) = A ( pt ) [ p ] / ( p n + 1 ) A(\operatorname {HP}^n) = A(\operatorname {pt})[p]/(p^{n+1}) . Borel classes for symplectic bundles are introduced in the paper. They satisfy the splitting principle and the Cartan sum formula, and they are used to calculate the cohomology of quaternionic Grassmannians. In a symplectically oriented theory the Thom classes of rank 2 2 symplectic bundles determine Thom and Borel classes for all symplectic bundles, and the symplectic Thom classes can be recovered from the Borel classes. The cell structure of the H Gr ⁡ ( r , n ) \operatorname {H Gr}(r,n) exists in cohomology, but it is difficult to see more than part of it geometrically. An exception is HP n \operatorname {HP}^n where the cell of codimension  2 i 2i is a quasi-affine quotient of A 4 n − 2 i + 1 \mathbb {A}^{4n-2i+1} by a nonlinear action of G a \mathbb {G}_a .


2020 ◽  
Vol 16 (08) ◽  
pp. 1859-1905
Author(s):  
David Corwin ◽  
Ishai Dan-Cohen

Polylogarithms are those multiple polylogarithms that factor through a certain quotient of the de Rham fundamental group of the thrice punctured line known as the polylogarithmic quotient. Building on work of Dan-Cohen, Wewers, and Brown, we push the computational boundary of our explicit motivic version of Kim’s method in the case of the thrice punctured line over an open subscheme of [Formula: see text]. To do so, we develop a greatly refined version of the algorithm of Dan-Cohen tailored specifically to this case, and we focus attention on the polylogarithmic quotient. This allows us to restrict our calculus with motivic iterated integrals to the so-called depth-one part of the mixed Tate Galois group studied extensively by Goncharov. We also discover an interesting consequence of the symmetry-breaking nature of the polylog quotient that forces us to symmetrize our polylogarithmic version of Kim’s conjecture. In this first part of a two-part series, we focus on a specific example, which allows us to verify an interesting new case of Kim’s conjecture.


Author(s):  
Benjamin Antieau

AbstractLet U be a connected noetherian scheme of finite étale cohomological dimension in which every finite set of points is contained in an affine open subscheme. Suppose that α is a class in H2(Uét,ℂm)tors. For each positive integer m, the K-theory of α-twisted sheaves is used to identify obstructions to α being representable by an Azumaya algebra of rank m2. The étale index of α, denoted eti(α), is the least positive integer such that all the obstructions vanish. Let per(α) be the order of α in H2(Uét,ℂm)tors. Methods from stable homotopy theory give an upper bound on the étale index that depends on the period of α and the étale cohomological dimension of U; this bound is expressed in terms of the exponents of the stable homotopy groups of spheres and the exponents of the stable homotopy groups of B(ℤ/(per(α))). As a corollary, if U is the spectrum of a field of finite cohomological dimension d, then , where [] is the integer part of , whenever per(α) is divided neither by the characteristic of k nor by any primes that are small relative to d.


Sign in / Sign up

Export Citation Format

Share Document