A numerical study on the energy transfer from surface waves to interfacial waves in a two-layer fluid system

2014 ◽  
Vol 763 ◽  
pp. 202-217 ◽  
Author(s):  
Mitsuhiro Tanaka ◽  
Kyoichi Wakayama

AbstractInteraction between surface and interfacial waves with continuous energy spectra in a two-layer density stratified fluid system is investigated numerically. For an initial wave field which consists only of the surface waves all propagating in the same direction, it is confirmed that the spectra $S_{s}(k)$ of the surface waves and $S_{i}(k)$ of the interfacial waves change significantly due to the recently found class 3 triad resonance. When the bulk of the surface wave spectrum $S_{s}(k)$ is initially located well above the critical wavenumber $k_{crit}$, below which the class 3 triad resonance is prohibited, $S_{s}(k)$ downshifts gradually toward the lower wavenumber during the initial stage of evolution. However, this downshift halts when the peak of $S_{s}(k)$ reaches around $k_{crit}$, and after that a steep peak forms in $S_{s}(k)$ around $k_{crit}$. It is confirmed that the timescale of the spectral evolution is of $O(1/{\it\epsilon}^{2})$ (${\it\epsilon}$ is a characteristic non-dimensional wave amplitude) in most of the $k$ space, consistent with the prediction of the wave turbulence theory for a system with a decay-type dispersion relation. However, it is also found that the timescale of the formation and growth of the sharp peak in $S_{s}(k)$ around $k_{crit}$ is of $O(1/{\it\epsilon})$, i.e. the timescale of the deterministic three-wave resonance.

2018 ◽  
Vol 35 (5) ◽  
pp. 1053-1075 ◽  
Author(s):  
Je-Yuan Hsu ◽  
Ren-Chieh Lien ◽  
Eric A. D’Asaro ◽  
Thomas B. Sanford

AbstractSeven subsurface Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats measured the voltage induced by the motional induction of seawater under Typhoon Fanapi in 2010. Measurements were processed to estimate high-frequency oceanic velocity variance associated with surface waves. Surface wave peak frequency fp and significant wave height Hs are estimated by a nonlinear least squares fitting to , assuming a broadband JONSWAP surface wave spectrum. The Hs is further corrected for the effects of float rotation, Earth’s geomagnetic field inclination, and surface wave propagation direction. The fp is 0.08–0.10 Hz, with the maximum fp of 0.10 Hz in the rear-left quadrant of Fanapi, which is ~0.02 Hz higher than in the rear-right quadrant. The Hs is 6–12 m, with the maximum in the rear sector of Fanapi. Comparing the estimated fp and Hs with those assuming a single dominant surface wave yields differences of more than 0.02 Hz and 4 m, respectively. The surface waves under Fanapi simulated in the WAVEWATCH III (ww3) model are used to assess and compare to float estimates. Differences in the surface wave spectra of JONSWAP and ww3 yield uncertainties of <5% outside Fanapi’s eyewall and >10% within the eyewall. The estimated fp is 10% less than the simulated before the passage of Fanapi’s eye and 20% less after eye passage. Most differences between Hs and simulated are <2 m except those in the rear-left quadrant of Fanapi, which are ~5 m. Surface wave estimates are important for guiding future model studies of tropical cyclone wave–ocean interactions.


1979 ◽  
Vol 93 (3) ◽  
pp. 433-448 ◽  
Author(s):  
Judith Y. Holyer

This paper contains a study of large amplitude, progressive interfacial waves moving between two infinite fluids of different densities. The highest wave has been calculated using the criterion that it has zero horizontal fluid velocity at the interface in a frame moving at the phase speed of the waves. For free surface waves this criterion is identical to the criterion due to Stokes, namely that there is a stagnation point at the crest of each wave. I t is found that as the density of the upper fluid increases relative to the density of the lower fluid the maximum height of the wave, for fixed wavelength, increases. The maximum height of a Boussinesq wave, which has the density almost the same above and below the interface, is 2·5 times the maximum height of a surface wave of the same wavelength. A wave with air over the top of it can be about 2% higher than the highest free surface wave. The point at which the limiting criterion is first satisfied moves from the crest for free surface waves to the point half-way between the crest and the trough for Boussinesq waves. The phase speed, momentum, energy and other wave properties are calculated for waves up to the highest using Padé approximants. For free surface waves and waves with air above the interface the maximum value of these properties occurs for waves which are lower than the highest. For Boussinesq waves and waves with the density of the upper fluid onetenth of the density of the lower fluid these properties each increase monotonically with the wave height.


2015 ◽  
Vol 91 (5) ◽  
Author(s):  
D. S. Goldobin ◽  
A. V. Pimenova ◽  
K. V. Kovalevskaya ◽  
D. V. Lyubimov ◽  
T. P. Lyubimova

Author(s):  
Odin Gramstad ◽  
Alexander Babanin

The non-linear interaction term is one of the three key source functions in every third-generation spectral wave model. An update of physics of this term is discussed. The standard statistical/phase-averaged description of the nonlinear transfer of energy in the wave spectrum (wave-turbulence) is based on Hasselmann’s kinetic equation [1]. In the derivation of the kinetic equation (KE) it is assumed that the evolution takes place on the slow O(ε−4) time scale, where ε is the wave steepness. This excludes the effects of near-resonant quartet interactions that may lead to spectral evolution on the ‘fast’ O(ε−2) time scale. Generalizations of the KE (GKE) that enable description of spectral evolution on the O(ε−2) time scale [2–4] are discussed. The GKE, first solved numerically in [4], is implemented as a source term in the third generation wave model WAVEWATCH-III. The new source term (GKE) is tested and compared to the other nonlinear-interaction source terms in WAVEWATCH-III; the full KE (WRT method) and the approximate DIA method. It is shown that the GKE gives similar results to the KE in the case of a relatively broad banded and directional spread spectrum, while it shows somewhat larger difference in the case of a more narrow banded spectrum with narrower directional distribution. We suggest that the GKE may be a suitable replacement to the KE in situations where ‘fast’ spectral evolution takes place.


Sign in / Sign up

Export Citation Format

Share Document