Experiments in rotating plane Couette flow – momentum transport by coherent roll-cell structure and zero-absolute-vorticity state

2016 ◽  
Vol 791 ◽  
pp. 191-213 ◽  
Author(s):  
Takuya Kawata ◽  
P. Henrik Alfredsson

In spanwise rotating plane Couette flow (RPCF) a secondary flow dominated by three-dimensional roll-cell structures develops. At high enough rotation rates the flow exhibits a state of zero absolute vorticity at the centre of the channel, as described by Suryadi et al. (Phys. Rev. E, vol. 89, 2014, 033003). They suggested that the zero-absolute-vorticity state is caused by the secondary flow motion of the coherent roll-cell structure induced by the Coriolis force. In the present study we focus on the momentum transport caused by the roll-cell structure of laminar RPCF in order to further understand how the zero-absolute-vorticity state is maintained by the coherent roll cells. The flow is studied through stereoscopic particle image velocimetry measurements, which allow both the Reynolds shear stress and the wall shear stress to be quantified and used as measures of the momentum transport across the channel. Various types of roll-cell structures at different system rotation rates and the momentum transport induced by them are investigated, and the processes in which the momentum is transported in the wall-normal direction are discussed based on a displaced-particle argument as well as the production of the Reynolds stresses. It is shown that the wall-normal fluid motion driven by secondary flow of the roll-cell structure induces two different effects on the mean flow which conflict each other, the momentum transport in the wall-normal direction and the Coriolis acceleration, and the zero-absolute-vorticity state is a stable state where these two effects cancel each other.

2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Yuhan Huang ◽  
Zhenhua Xia ◽  
Minping Wan ◽  
Yipeng Shi ◽  
Shiyi Chen

1996 ◽  
Vol 317 ◽  
pp. 195-214 ◽  
Author(s):  
Knut H. Bech ◽  
Helge I. Andersson

As in the laminar case, the turbulent plane Couette flow is unstable (stable) with respect to roll cell instabilities when the weak background angular velocity Ωk is antiparallel (parallel) to the spanwise mean flow vorticity (-dU/dy)k. The critical value of the rotation number Ro, based on 2Ω and dU/dy of the corresponding laminar flow, was estimated as 0.0002 at a low Reynolds number with fully developed turbulence. Direct numerical simulations were performed for Ro = ±0.01 and compared with earlier results for non-rotating Couette flow. At the low rotation rates considered, both senses of rotation damped the turbulence and the number of near-wall turbulence-generating events was reduced. The destabilized flow was more energetic, but less three-dimensional, than the non-rotating flow. In the destabilized case, the two-dimensional roll cells extracted a comparable amount of kinetic energy from the mean flow as did the turbulence, thereby decreasing the turbulent kinetic energy. The turbulence anisotropy was practically unaffected by weak spanwise rotation, while the secondary flow was highly anisotropic due to its inability to contract and expand in the streamwise direction.


2014 ◽  
Vol 89 (3) ◽  
Author(s):  
Alexandre Suryadi ◽  
Antonio Segalini ◽  
P. Henrik Alfredsson

Sign in / Sign up

Export Citation Format

Share Document