Finite-amplitude gravity waves in the atmosphere: travelling wave solutions

2017 ◽  
Vol 826 ◽  
pp. 1034-1065 ◽  
Author(s):  
Mark Schlutow ◽  
R. Klein ◽  
U. Achatz

Wentzel–Kramers–Brillouin theory was employed by Grimshaw (Geophys. Fluid Dyn., vol. 6, 1974, pp. 131–148) and Achatz et al. (J. Fluid Mech., vol. 210, 2010, pp. 120–147) to derive modulation equations for non-hydrostatic internal gravity wave packets in the atmosphere. This theory allows for wave packet envelopes with vertical extent comparable to the pressure scale height and for large wave amplitudes with wave-induced mean-flow speeds comparable to the local fluctuation velocities. Two classes of exact travelling wave solutions to these nonlinear modulation equations are derived here. The first class involves horizontally propagating wave packets superimposed over rather general background states. In a co-moving frame of reference, examples from this class have a structure akin to stationary mountain lee waves. Numerical simulations corroborate the existence of nearby travelling wave solutions under the pseudo-incompressible model and reveal better than expected convergence with respect to the asymptotic expansion parameter. Travelling wave solutions of the second class also feature a vertical component of their group velocity but exist under isothermal background stratification only. These waves include an interesting nonlinear wave–mean-flow interaction process: a horizontally periodic wave packet propagates vertically while draining energy from the mean wind aloft. In the process it decelerates the lower-level wind. It is shown that the modulation equations apply equally to hydrostatic waves in the limit of large horizontal wavelengths. Aside from these results of direct physical interest, the new nonlinear travelling wave solutions provide a firm basis for subsequent studies of nonlinear internal wave instability and for the design of subtle test cases for numerical flow solvers.

2007 ◽  
Vol 18 (5) ◽  
pp. 583-605 ◽  
Author(s):  
D. HILHORST ◽  
J. R. KING ◽  
M. RÖGER

We study travelling-wave solutions for a reaction-diffusion system arising as a model for host-tissue degradation by bacteria. This system consists of a parabolic equation coupled with an ordinary differential equation. For large values of the ‘degradation-rate parameter’ solutions are well approximated by solutions of a Stefan-like free boundary problem, for which travelling-wave solutions can be found explicitly. Our aim is to prove the existence of travelling waves for all sufficiently large wave speeds for the original reaction-diffusion system and to determine the minimal speed. We prove that for all sufficiently large degradation rates, the minimal speed is identical to the minimal speed of the limit problem. In particular, in this parameter range,non-linearselection of the minimal speed occurs.


Author(s):  
D. T. Papageorgiou ◽  
S. Tanveer

This paper is concerned with analysis and computations of a non-local thin-film model developed in Kalogirou & Papageorgiou ( J. Fluid Mech. 802 , 5–36, 2016) for a perturbed two-layer Couette flow when the thickness of the more viscous fluid layer next to the stationary wall is small compared to the thickness of the less viscous fluid. Travelling wave solutions and their stability are determined numerically, and secondary bifurcation points are identified in the process. We also determine regions in parameter space where bistability is observed with two branches being linearly stable at the same time. The travelling wave solutions are mathematically justified through a quasi-solution analysis in a neighbourhood of an empirically constructed approximate solution. This relies in part on precise asymptotics of integrals of Airy functions for large wave numbers. The primary bifurcation about the trivial state is shown rigorously to be supercritical, and the dependence of bifurcation points, as a function of Reynolds number R and the primary wavelength 2 πν −1/2 of the disturbance, is determined analytically.


2020 ◽  
Author(s):  
Miftachul Hadi

We review the work of Ranjit Kumar, R S Kaushal, Awadhesh Prasad. The work is still in progress.


Author(s):  
Andronikos Paliathanasis ◽  
Genly Leon ◽  
P. G. L. Leach

Abstract We apply the Painlevé test for the Benney and the Benney–Gjevik equations, which describe waves in falling liquids. We prove that these two nonlinear 1 + 1 evolution equations pass the singularity test for the travelling-wave solutions. The algebraic solutions in terms of Laurent expansions are presented.


Sign in / Sign up

Export Citation Format

Share Document