scholarly journals Scaling mean velocity in two-dimensional turbulent wall jets

2020 ◽  
Vol 891 ◽  
Author(s):  
Abhishek Gupta ◽  
Harish Choudhary ◽  
A. K. Singh ◽  
Thara Prabhakaran ◽  
Shivsai Ajit Dixit

1983 ◽  
Vol 26 (222) ◽  
pp. 2074-2080 ◽  
Author(s):  
Ryoji KOBAYASHI ◽  
Nobuyuki FUJISAWA

1963 ◽  
Vol 85 (3) ◽  
pp. 209-213 ◽  
Author(s):  
G. E. Myers ◽  
J. J. Schauer ◽  
R. H. Eustis

The heat-transfer characteristics of two-dimensional, incompressible, turbulent wall jets are discussed. An analytical prediction is made for the local Stanton number and data are presented for a step wall temperature distribution. The method for extending these data to arbitrary heating conditions is shown. Temperature surveys in the wall jet boundary layer are also presented.


1980 ◽  
Vol 102 (3) ◽  
pp. 350-356 ◽  
Author(s):  
M. Ljuboja ◽  
W. Rodi

A modified version of the k-ε turbulence model is developed which predicts well the main features of turbulent wall jets. The model relates the turbulent shear stress to the mean velocity gradient, the turbulent kinetic energy k, and the dissipation rate ε by way of the Kolmogorov-Prandtl eddy viscosity relation and determines k and ε from transport equations. The empirical constant in the Kolmogorov-Prandtl relation is replaced by a function which is derived by reducing a model form of the Reynolds stress transport equations to algebraic expressions, retaining the wall damping correction to the pressure-strain model used in these equations. The modified k-ε model is applied to a wall jet in stagnant surroundings as well as to a wall jet in a moving stream, and the predictions are compared with experimental data. The agreement is good with respect to most features of these flows.


1983 ◽  
Vol 53 (6) ◽  
pp. 409-417 ◽  
Author(s):  
R. Kobayashi ◽  
N. Fujisawa

1977 ◽  
Vol 15 (3) ◽  
pp. 277-289 ◽  
Author(s):  
N. Rajaratnam ◽  
B. Berry

1997 ◽  
Vol 119 (2) ◽  
pp. 304-313 ◽  
Author(s):  
G. Gerodimos ◽  
R. M. C. So

In most two-dimensional simple turbulent flows, the location of zero shear usually coincides with that of vanishing mean velocity gradient. However, such is not the case for plane turbulent wall jets. This could be due to the fact that the driving potential is the jet exit momentum, which gives rise to an outer region that resembles a free jet and an inner layer that is similar to a boundary layer. The interaction of a free-jet like flow with a boundary-layer type flow distinguishes the plane wall jet from other simple flows. Consequently, in the past, two-equation turbulence models are seldom able to predict the jet spread correctly. The present study investigates the appropriateness of two-equation modeling; particularly the importance of near-wall modeling and the validity of the equilibrium turbulence assumption. An improved near-wall model and three others are analyzed and their predictions are compared with recent measurements of plane wall jets. The jet spread is calculated correctly by the improved model, which is able to replicate the mixing behavior between the outer jet-like and inner wall layer and is asymptotically consistent. Good agreement with other measured quantities is also obtained. However, other near-wall models tested are also capable of reproducing the Reynolds-number effects of plane wall jets, but their predictions of the jet spread are incorrect.


Sign in / Sign up

Export Citation Format

Share Document