scholarly journals Small drift limit theorems for random walks

2017 ◽  
Vol 54 (1) ◽  
pp. 199-212
Author(s):  
Ernst Schulte-Geers ◽  
Wolfgang Stadje

AbstractWe show analogs of the classical arcsine theorem for the occupation time of a random walk in (−∞,0) in the case of a small positive drift. To study the asymptotic behavior of the total time spent in (−∞,0) we consider parametrized classes of random walks, where the convergence of the parameter to 0 implies the convergence of the drift to 0. We begin with shift families, generated by a centered random walk by adding to each step a shift constant a>0 and then letting a tend to 0. Then we study families of associated distributions. In all cases we arrive at the same limiting distribution, which is the distribution of the time spent below 0 of a standard Brownian motion with drift 1. For shift families this is explained by a functional limit theorem. Using fluctuation-theoretic formulae we derive the generating function of the occupation time in closed form, which provides an alternative approach. We also present a new form of the first arcsine law for the Brownian motion with drift.

2000 ◽  
Vol 32 (01) ◽  
pp. 177-192 ◽  
Author(s):  
K. S. Chong ◽  
Richard Cowan ◽  
Lars Holst

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.


2000 ◽  
Vol 32 (1) ◽  
pp. 177-192 ◽  
Author(s):  
K. S. Chong ◽  
Richard Cowan ◽  
Lars Holst

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.


1978 ◽  
Vol 10 (04) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U (∊) n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M ∊ = max {U (∊) n , n ≧ 0}, v 0 = min {n : U (∊) n = M ∊}, v 1 = max {n : U (∊) n = M ∊}. The joint limiting distribution of ∊2σ∊ –2 v 0 and ∊σ∊ –2 M ∊ is determined. It is the same as for ∊2σ∊ –2 v 1 and ∊σ–2 ∊ M ∊. The marginal ∊σ–2 ∊ M ∊ gives Kingman's heavy traffic theorem. Also lim ∊–1 P(M ∊ = 0) and lim ∊–1 P(M ∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U (∊) n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.


2011 ◽  
Vol 43 (3) ◽  
pp. 782-813 ◽  
Author(s):  
M. Jara ◽  
T. Komorowski

In this paper we consider the scaled limit of a continuous-time random walk (CTRW) based on a Markov chain {Xn,n≥ 0} and two observables, τ(∙) andV(∙), corresponding to the renewal times and jump sizes. Assuming that these observables belong to the domains of attraction of some stable laws, we give sufficient conditions on the chain that guarantee the existence of the scaled limits for CTRWs. An application of the results to a process that arises in quantum transport theory is provided. The results obtained in this paper generalize earlier results contained in Becker-Kern, Meerschaert and Scheffler (2004) and Meerschaert and Scheffler (2008), and the recent results of Henry and Straka (2011) and Jurlewicz, Kern, Meerschaert and Scheffler (2010), where {Xn,n≥ 0} is a sequence of independent and identically distributed random variables.


2020 ◽  
Vol 178 (3-4) ◽  
pp. 1173-1192 ◽  
Author(s):  
Jean Bertoin

Abstract A reinforcement algorithm introduced by Simon (Biometrika 42(3/4):425–440, 1955) produces a sequence of uniform random variables with long range memory as follows. At each step, with a fixed probability $$p\in (0,1)$$ p ∈ ( 0 , 1 ) , $${\hat{U}}_{n+1}$$ U ^ n + 1 is sampled uniformly from $${\hat{U}}_1, \ldots , {\hat{U}}_n$$ U ^ 1 , … , U ^ n , and with complementary probability $$1-p$$ 1 - p , $${\hat{U}}_{n+1}$$ U ^ n + 1 is a new independent uniform variable. The Glivenko–Cantelli theorem remains valid for the reinforced empirical measure, but not the Donsker theorem. Specifically, we show that the sequence of empirical processes converges in law to a Brownian bridge only up to a constant factor when $$p<1/2$$ p < 1 / 2 , and that a further rescaling is needed when $$p>1/2$$ p > 1 / 2 and the limit is then a bridge with exchangeable increments and discontinuous paths. This is related to earlier limit theorems for correlated Bernoulli processes, the so-called elephant random walk, and more generally step reinforced random walks.


1991 ◽  
Vol 28 (4) ◽  
pp. 717-726 ◽  
Author(s):  
Claude Bélisle ◽  
Julian Faraway

Recent results on the winding angle of the ordinary two-dimensional random walk on the integer lattice are reviewed. The difference between the Brownian motion winding angle and the random walk winding angle is discussed. Other functionals of the random walk, such as the maximum winding angle, are also considered and new results on their asymptotic behavior, as the number of steps increases, are presented. Results of computer simulations are presented, indicating how well the asymptotic distributions fit the exact distributions for random walks with 10m steps, for m = 2, 3, 4, 5, 6, 7.


Author(s):  
Aleksandar Mijatović

In this paper, we prove that the probability kernel of a random walk on a trinomial tree converges to the density of a Brownian motion with drift at the rate O ( h 4 ), where h is the distance between the nodes of the tree. We also show that this convergence estimate is optimal in which the density of the random walk cannot converge at a faster rate. The proof is based on an application of spectral theory to the transition density of the random walk. This yields an integral representation of the discrete probability kernel that allows us to determine the convergence rate.


1998 ◽  
Vol 35 (2) ◽  
pp. 272-280 ◽  
Author(s):  
R. A. Doney ◽  
M. Yor

A recent result of Takács (1995) gives explicitly the density of the time spent before t above a level x ≠ 0 by Brownian motion with drift. Takács' proof is by means of random walk approximations to Brownian motion, but in this paper we give two different proofs of this result by considerations involving only Brownian motion. We also give a reformulation of Takács' result which involves Brownian meanders, and an extension of Denisov's representation of Brownian motion in terms of two independent Brownian meanders.


2017 ◽  
Vol 32 (1) ◽  
pp. 330-352
Author(s):  
Endre Csáki ◽  
Miklós Csörgő ◽  
Antónia Földes ◽  
Pál Révész

Author(s):  
NADINE GUILLOTIN-PLANTARD ◽  
RENÉ SCHOTT

Quantum Bernoulli random walks can be realized as random walks on the dual of SU(2). We use this realization in order to study a model of dynamic quantum Bernoulli random walk with time-dependent transitions. For the corresponding dynamic random walk on the dual of SU(2), we prove several limit theorems (local limit theorem, central limit theorem, law of large numbers, large deviation principle). In addition, we characterize a large class of transient dynamic random walks.


Sign in / Sign up

Export Citation Format

Share Document