scholarly journals Dynkin games with heterogeneous beliefs

2017 ◽  
Vol 54 (1) ◽  
pp. 236-251 ◽  
Author(s):  
Erik Ekström ◽  
Kristoffer Glover ◽  
Marta Leniec

AbstractWe study zero-sum optimal stopping games (Dynkin games) between two players who disagree about the underlying model. In a Markovian setting, a verification result is established showing that if a pair of functions can be found that satisfies some natural conditions then a Nash equilibrium of stopping times is obtained, with the given functions as the corresponding value functions. In general, however, there is no uniqueness of Nash equilibria, and different equilibria give rise to different value functions. As an example, we provide a thorough study of the game version of the American call option under heterogeneous beliefs. Finally, we also study equilibria in randomized stopping times.

1987 ◽  
Vol 24 (02) ◽  
pp. 386-401 ◽  
Author(s):  
John W. Mamer

We consider the extension of optimal stopping problems to non-zero-sum strategic settings called stopping games. By imposing a monotone structure on the pay-offs of the game we establish the existence of a Nash equilibrium in non-randomized stopping times. As a corollary, we identify a class of games for which there are Nash equilibria in myopic stopping times. These games satisfy the strategic equivalent of the classical ‘monotone case' assumptions of the optimal stopping problem.


1987 ◽  
Vol 24 (2) ◽  
pp. 386-401 ◽  
Author(s):  
John W. Mamer

We consider the extension of optimal stopping problems to non-zero-sum strategic settings called stopping games. By imposing a monotone structure on the pay-offs of the game we establish the existence of a Nash equilibrium in non-randomized stopping times. As a corollary, we identify a class of games for which there are Nash equilibria in myopic stopping times. These games satisfy the strategic equivalent of the classical ‘monotone case' assumptions of the optimal stopping problem.


Author(s):  
Tiziano De Angelis ◽  
Erik Ekström ◽  
Kristoffer Glover

We study the value and the optimal strategies for a two-player zero-sum optimal stopping game with incomplete and asymmetric information. In our Bayesian setup, the drift of the underlying diffusion process is unknown to one player (incomplete information feature), but known to the other one (asymmetric information feature). We formulate the problem and reduce it to a fully Markovian setup where the uninformed player optimises over stopping times and the informed one uses randomised stopping times in order to hide their informational advantage. Then we provide a general verification result that allows us to find the value of the game and players’ optimal strategies by solving suitable quasi-variational inequalities with some nonstandard constraints. Finally, we study an example with linear payoffs, in which an explicit solution of the corresponding quasi-variational inequalities can be obtained.


2017 ◽  
Vol 78 (3) ◽  
pp. 457-468
Author(s):  
Erhan Bayraktar ◽  
Zhou Zhou

Author(s):  
Erhan Bayraktar ◽  
Zhou Zhou

2014 ◽  
Vol 51 (03) ◽  
pp. 799-817 ◽  
Author(s):  
Pavel V. Gapeev ◽  
Neofytos Rodosthenous

We study optimal stopping problems related to the pricing of perpetual American options in an extension of the Black-Merton-Scholes model in which the dividend and volatility rates of the underlying risky asset depend on the running values of its maximum and maximum drawdown. The optimal stopping times of the exercise are shown to be the first times at which the price of the underlying asset exits some regions restricted by certain boundaries depending on the running values of the associated maximum and maximum drawdown processes. We obtain closed-form solutions to the equivalent free-boundary problems for the value functions with smooth fit at the optimal stopping boundaries and normal reflection at the edges of the state space of the resulting three-dimensional Markov process. We derive first-order nonlinear ordinary differential equations for the optimal exercise boundaries of the perpetual American standard options.


2014 ◽  
Vol 51 (3) ◽  
pp. 799-817 ◽  
Author(s):  
Pavel V. Gapeev ◽  
Neofytos Rodosthenous

We study optimal stopping problems related to the pricing of perpetual American options in an extension of the Black-Merton-Scholes model in which the dividend and volatility rates of the underlying risky asset depend on the running values of its maximum and maximum drawdown. The optimal stopping times of the exercise are shown to be the first times at which the price of the underlying asset exits some regions restricted by certain boundaries depending on the running values of the associated maximum and maximum drawdown processes. We obtain closed-form solutions to the equivalent free-boundary problems for the value functions with smooth fit at the optimal stopping boundaries and normal reflection at the edges of the state space of the resulting three-dimensional Markov process. We derive first-order nonlinear ordinary differential equations for the optimal exercise boundaries of the perpetual American standard options.


2017 ◽  
Vol 49 (2) ◽  
pp. 430-445 ◽  
Author(s):  
Natalie Attard

Abstract We present solutions to nonzero-sum games of optimal stopping for Brownian motion in [0, 1] absorbed at either 0 or 1. The approach used is based on the double partial superharmonic characterisation of the value functions derived in Attard (2015). In this setting the characterisation of the value functions has a transparent geometrical interpretation of 'pulling two ropes' above 'two obstacles' which must, however, be constrained to pass through certain regions. This is an extension of the analogous result derived by Peskir (2009), (2012) (semiharmonic characterisation) for the value function in zero-sum games of optimal stopping. To derive the value functions we transform the game into a free-boundary problem. The latter is then solved by making use of the double smooth fit principle which was also observed in Attard (2015). Martingale arguments based on the Itô–Tanaka formula will then be used to verify that the solution to the free-boundary problem coincides with the value functions of the game and this will establish the Nash equilibrium.


2000 ◽  
Vol 37 (4) ◽  
pp. 972-983 ◽  
Author(s):  
Jesper Lund Pedersen

The maximality principle [6] is shown to be valid in some examples of discounted optimal stopping problems for the maximum process. In each of these examples explicit formulas for the value functions are derived and the optimal stopping times are displayed. In particular, in the framework of the Black-Scholes model, the fair prices of two lookback options with infinite horizon are calculated. The main aim of the paper is to show that in each considered example the optimal stopping boundary satisfies the maximality principle and that the value function can be determined explicitly.


Sign in / Sign up

Export Citation Format

Share Document