scholarly journals Central limit theorem for mean and variogram estimators in Lévy–based models

2019 ◽  
Vol 56 (01) ◽  
pp. 209-222
Author(s):  
Anders Rønn-Nielsen ◽  
Eva B. Vedel Jensen

AbstractWe consider an infinitely divisible random field in ℝd given as an integral of a kernel function with respect to a Lévy basis. Under mild regularity conditions, we derive central limit theorems for the moment estimators of the mean and the variogram of the field.

10.37236/3763 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael Fuchs ◽  
Chung-Kuei Lee

Tries and PATRICIA tries are fundamental data structures in computer science with numerous applications. In a recent paper, a general framework for obtaining the mean and variance of additive shape parameters of tries and PATRICIA tries under the Bernoulli model was proposed. In this note, we show that a slight modification of this framework yields a central limit theorem for shape parameters, too. This central limit theorem contains many of the previous central limit theorems from the literature and it can be used to prove recent conjectures and derive new results. As an example, we will consider a refinement of the size of tries and PATRICIA tries, namely, the number of nodes of fixed outdegree and obtain (univariate and bivariate) central limit theorems. Moreover, trivariate central limit theorems for size, internal path length and internal Wiener index of tries and PATRICIA tries are derived as well.


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5581-5590 ◽  
Author(s):  
Yu Miao ◽  
Xiaoyan Xu

In the present paper, the almost sure central limit theorem for them-dependent random sequence is established, which weakens the moment conditions of Giuliano [10] for the stationary m-dependent sequence and gets the same results with different methods.


1992 ◽  
Vol 24 (2) ◽  
pp. 267-287 ◽  
Author(s):  
Allen L. Roginsky

Three different definitions of the renewal processes are considered. For each of them, a central limit theorem with a remainder term is proved. The random variables that form the renewal processes are independent but not necessarily identically distributed and do not have to be positive. The results obtained in this paper improve and extend the central limit theorems obtained by Ahmad (1981) and Niculescu and Omey (1985).


2012 ◽  
Vol 44 (01) ◽  
pp. 1-20 ◽  
Author(s):  
B. Galerne ◽  
Y. Gousseau

In this paper we introduce the transparent dead leaves (TDL) random field, a new germ-grain model in which the grains are combined according to a transparency principle. Informally, this model may be seen as the superposition of infinitely many semitransparent objects. It is therefore of interest in view of the modeling of natural images. Properties of this new model are established and a simulation algorithm is proposed. The main contribution of the paper is to establish a central limit theorem, showing that, when varying the transparency of the grain from opacity to total transparency, the TDL model ranges from the dead leaves model to a Gaussian random field.


1978 ◽  
Vol 10 (04) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U (∊) n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M ∊ = max {U (∊) n , n ≧ 0}, v 0 = min {n : U (∊) n = M ∊}, v 1 = max {n : U (∊) n = M ∊}. The joint limiting distribution of ∊2σ∊ –2 v 0 and ∊σ∊ –2 M ∊ is determined. It is the same as for ∊2σ∊ –2 v 1 and ∊σ–2 ∊ M ∊. The marginal ∊σ–2 ∊ M ∊ gives Kingman's heavy traffic theorem. Also lim ∊–1 P(M ∊ = 0) and lim ∊–1 P(M ∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U (∊) n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.


2004 ◽  
Vol 56 (1) ◽  
pp. 209-224 ◽  
Author(s):  
Byron Schmuland ◽  
Wei Sun

AbstractIn [6], Walter Philipp wrote that “… the law of the iterated logarithm holds for any process for which the Borel-Cantelli Lemma, the central limit theorem with a reasonably good remainder and a certain maximal inequality are valid.” Many authors [1], [2], [4], [5], [9] have followed this plan in proving the law of the iterated logarithm for sequences (or fields) of dependent random variables.We carry on this tradition by proving the law of the iterated logarithm for a random field whose correlations satisfy an exponential decay condition like the one obtained by Spohn [8] for certain Gibbs measures. These do not fall into the ϕ-mixing or strong mixing cases established in the literature, but are needed for our investigations [7] into diffusions on configuration space.The proofs are all obtained by patching together standard results from [5], [9] while keeping a careful eye on the correlations.


2019 ◽  
Vol 51 (03) ◽  
pp. 667-716
Author(s):  
Riccardo Passeggeri ◽  
Almut E. D. Veraart

AbstractIn this paper we introduce the multivariate Brownian semistationary (BSS) process and study the joint asymptotic behaviour of its realised covariation using in-fill asymptotics. First, we present a central limit theorem for general multivariate Gaussian processes with stationary increments, which are not necessarily semimartingales. Then, we show weak laws of large numbers, central limit theorems, and feasible results for BSS processes. An explicit example based on the so-called gamma kernels is also provided.


1978 ◽  
Vol 18 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Robert J. Adler

We obtain sufficient conditions for the convergence of martingale triangular arrays to infinitely divisible laws with finite variances, without making the usual assumptions of uniform asymptotic negligibility. Our results generalise known results for both the martingale case under a negligibility assumption and the classical (independence) case without such assumptions.


Sign in / Sign up

Export Citation Format

Share Document