Measures of ageing tendency

2019 ◽  
Vol 56 (2) ◽  
pp. 358-383
Author(s):  
Magdalena Szymkowiak

AbstractA family of generalized ageing intensity functions of univariate absolutely continuous lifetime random variables is introduced and studied. They allow the analysis and measurement of the ageing tendency from various points of view. Some of these generalized ageing intensities characterize families of distributions dependent on a single parameter, while others determine distributions uniquely. In particular, it is shown that the elasticity functions of various transformations of distributions that appear in lifetime analysis and reliability theory uniquely characterize the parent distribution. Moreover, the recognition of the shape of a properly chosen generalized ageing intensity estimate admits a simple identification of the data lifetime distribution.

Author(s):  
Francesco Buono ◽  
Maria Longobardi ◽  
Magdalena Szymkowiak

AbstractThe reversed aging intensity function is defined as the ratio of the instantaneous reversed hazard rate to the baseline value of the reversed hazard rate. It analyzes the aging property quantitatively, the higher the reversed aging intensity, the weaker the tendency of aging. In this paper, a family of generalized reversed aging intensity functions is introduced and studied. Those functions depend on a real parameter. If the parameter is positive they characterize uniquely the distribution functions of univariate positive absolutely continuous random variables, in the opposite case they characterize families of distributions. Furthermore, the generalized reversed aging intensity orders are defined and studied. Finally, several numerical examples are given.


1987 ◽  
Vol 24 (4) ◽  
pp. 809-826 ◽  
Author(s):  
J. Michael Steele ◽  
Lawrence A. Shepp ◽  
William F. Eddy

Let Vk,n be the number of vertices of degree k in the Euclidean minimal spanning tree of Xi, , where the Xi are independent, absolutely continuous random variables with values in Rd. It is proved that n–1Vk,n converges with probability 1 to a constant α k,d. Intermediate results provide information about how the vertex degrees of a minimal spanning tree change as points are added or deleted, about the decomposition of minimal spanning trees into probabilistically similar trees, and about the mean and variance of Vk,n.


1981 ◽  
Vol 18 (3) ◽  
pp. 652-659 ◽  
Author(s):  
M. J. Phillips

The negative exponential distribution is characterized in terms of two independent random variables. Only one of the random variables has a negative exponential distribution whilst the other can belong to a wide class of distributions. This result is then applied to two models for the reliability of a system of two modules subject to revealed and unrevealed faults to show when the models are equivalent. It is also shown, under certain conditions, that the system availability is only independent of the distribution of revealed failure times in one module when unrevealed failure times in the other module have a negative exponential distribution.


1973 ◽  
Vol 16 (3) ◽  
pp. 337-342 ◽  
Author(s):  
M. S. Srivastava

Let(X1, Y1), (X2, Y2),…, (Xn, Yn) be n mutually independent pairs of random variables with absolutely continuous (hereafter, a.c.) pdf given by(1)where f(ρ) denotes the conditional pdf of X given Y, g(y) the marginal pdf of Y, e(ρ)→ 1 and b(ρ)→0 as ρ→0 and,(2)We wish to test the hypothesis(3)against the alternative(4)For the two-sided alternative we take — ∞< b < ∞. A feature of the model (1) is that it covers both-sided alternatives which have not been considered in the literature so far.


1969 ◽  
Vol 6 (01) ◽  
pp. 195-200 ◽  
Author(s):  
J. Howard Weiner

Consider a Bellman-Harris [1] age dependent branching process. At t = 0, a cell is born, has lifetime distribution function G(t), G(0) = 0, assumed to be absolutely continuous with density g(t). At the death of the cell, k new cells are born, each proceeding independently and identically as the parent cell, and independent of past history. Denote by h(s) = Σ k=0 ∞ pk s k and suppose h(1) ≡ m, and assume h”(1) &lt; ∞. Additional assumptions will be added as required.


1987 ◽  
Vol 24 (04) ◽  
pp. 809-826 ◽  
Author(s):  
J. Michael Steele ◽  
Lawrence A. Shepp ◽  
William F. Eddy

Let Vk,n be the number of vertices of degree k in the Euclidean minimal spanning tree of Xi , , where the Xi are independent, absolutely continuous random variables with values in Rd. It is proved that n –1 Vk,n converges with probability 1 to a constant α k,d. Intermediate results provide information about how the vertex degrees of a minimal spanning tree change as points are added or deleted, about the decomposition of minimal spanning trees into probabilistically similar trees, and about the mean and variance of Vk,n.


1981 ◽  
Vol 18 (03) ◽  
pp. 652-659 ◽  
Author(s):  
M. J. Phillips

The negative exponential distribution is characterized in terms of two independent random variables. Only one of the random variables has a negative exponential distribution whilst the other can belong to a wide class of distributions. This result is then applied to two models for the reliability of a system of two modules subject to revealed and unrevealed faults to show when the models are equivalent. It is also shown, under certain conditions, that the system availability is only independent of the distribution of revealed failure times in one module when unrevealed failure times in the other module have a negative exponential distribution.


Author(s):  
JANUSZ WYSOCZAŃSKI

We define a deformation of free creations (and annihilations), given by operators on the full Fock space, acting nontrivially only between the vacuum subspace ℂΩ and the twofold tensor product [Formula: see text]. Then we study the distribution of the deformed free gaussian operators, with the deformation containing also a real parameter d. The recurrence formula for moments is shown, and the Cauchy transform of the distribution measure is computed. This yields the description of the measure: absolutely continuous part and the atomic part. The existence of atoms depends on the parameter d. The special case d =1 is studied with all details, with the formula for moments is given as values of the hypergeometric series. Finally we show the formula for computing the mixed moments of the deformed operators.


Sign in / Sign up

Export Citation Format

Share Document