minimal spanning trees
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 9)

H-INDEX

18
(FIVE YEARS 1)

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1674
Author(s):  
Jarosław Kwapień ◽  
Marcin Wątorek ◽  
Stanisław Drożdż

Time series of price returns for 80 of the most liquid cryptocurrencies listed on Binance are investigated for the presence of detrended cross-correlations. A spectral analysis of the detrended correlation matrix and a topological analysis of the minimal spanning trees calculated based on this matrix are applied for different positions of a moving window. The cryptocurrencies become more strongly cross-correlated among themselves than they used to be before. The average cross-correlations increase with time on a specific time scale in a way that resembles the Epps effect amplification when going from past to present. The minimal spanning trees also change their topology and, for the short time scales, they become more centralized with increasing maximum node degrees, while for the long time scales they become more distributed, but also more correlated at the same time. Apart from the inter-market dependencies, the detrended cross-correlations between the cryptocurrency market and some traditional markets, like the stock markets, commodity markets, and Forex, are also analyzed. The cryptocurrency market shows higher levels of cross-correlations with the other markets during the same turbulent periods, in which it is strongly cross-correlated itself.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2726
Author(s):  
John R. Jungck ◽  
Michael J. Pelsmajer ◽  
Camron Chappel ◽  
Dylan Taylor

Every biological image contains quantitative data that can be used to test hypotheses about how patterns were formed, what entities are associated with one another, and whether standard mathematical methods inform our understanding of biological phenomena. In particular, spatial point distributions and polygonal tessellations are particularly amendable to analysis with a variety of graph theoretic, computational geometric, and spatial statistical tools such as: Voronoi polygons; Delaunay triangulations; perpendicular bisectors; circumcenters; convex hulls; minimal spanning trees; Ulam trees; Pitteway violations; circularity; Clark-Evans spatial statistics; variance to mean ratios; Gabriel graphs; and, minimal spanning trees. Furthermore, biologists have developed a number of empirically related correlations for polygonal tessellations such as: Lewis’s law (the number of edges of convex polygons are positively correlated with the areas of these polygons): Desch’s Law (the number of edges of convex polygons are positively correlated with the perimeters of these polygons); and Errara’s Law (daughter cell areas should be roughly half that of their parent cells’ areas). We introduce a new Pitteway Law that the number of sides of the convex polygons in a Voronoi tessellation of biological epithelia is proportional to the minimal interior angle of the convex polygons as angles less than 90 degrees result in Pitteway violations of the Delaunay dual of the Voronoi tessellation.


Author(s):  
John R Jungck ◽  
Michael J Pelsmajer ◽  
Camron Chappel ◽  
Dylan Taylor

Every biological image contains quantitative data that can be used to test hypotheses about how patterns were formed, what entities are associated with one another, and whether standard mathematical methods inform our understanding of biological phenomena. In particular, spatial point distributions and polygonal tessellations are particularly amendable to analysis with a variety of graph theoretic, computational geometric, and spatial statistical tools such as: Voronoi Polygons; Delaunay Triangulations; Perpendicular Bisectors; Circumcenters; Convex Hulls; Minimal Spanning Trees; Ulam Trees; Pitteway Violations; Circularity; Clark-Evans spatial statistics; Variance to Mean Ratios; Gabriel Graphs; and, Minimal Spanning Trees. Furthermore, biologists have developed a number of empirically related correlations for polygonal tessellations such as: Lewis’s Law (the number of edges of convex polygons are positively correlated with the areas of these polygons): Desch’s Law (the number of edges of convex polygons are positively correlated with the perimeters of these polygons); and Errara’s Law (daughter cell areas should be roughly half that of their parent cells’ areas). We introduce a new Pitteway Law that the number of sides of the convex polygons in a Voronoi tessellation of biological epithelia is proportional to the minimal interior angle of the convex polygons as angles less than 90 degrees result in Pitteway violations of the Delaunay dual of the Voronoi tessellation.


2021 ◽  
Author(s):  
Emiliano Alvarez ◽  
Juan Gabriel Brida ◽  
Erick Limas ◽  
Lucia Rosich

AbstractThis work addresses the spread of the coronavirus through a non-parametric approach, with the aim of identifying communities of countries based on how similar their evolution of the disease is. The analysis focuses on the number of daily new COVID-19 cases per ten thousand people during a period covering at least 250 days after the confirmation of the tenth case. Dynamic analysis is performed by constructing Minimal Spanning Trees (MST) and identifying groups of similarity in contagions evolution in 95 time windows of a 150-day amplitude that moves one day at a time. The number of times countries belonged to a similar performance group in constructed time windows was the intensity measure considered. Groups’ composition is not stable, indicating that the COVID-19 evolution needs to be treated as a dynamic problem in the context of complex systems. Three communities were identified by applying the Louvain algorithm. Identified communities analysis according to each country’s socioeconomic characteristics and variables related to the disease sheds light on whether there is any suggested course of action. Even when strong testing and tracing cases policies may be related with a more stable dynamic of the disease, results indicate that communities are conformed by countries with diverse characteristics. The best option to counteract the harmful effects of a pandemic may be having strong health systems in place,with contingent capacity to deal with unforeseen events and available resources capable of a rapid expansion of its capacity.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Emiliano Alvarez ◽  
Juan Gabriel Brida ◽  
Lucía Rosich ◽  
Erick Limas

<p style='text-indent:20px;'>This work addresses the spread of the coronavirus through a non-parametric approach, with the aim of identifying communities of countries based on how similar their evolution of the disease is. The analysis focuses on the number of daily new COVID-19 cases per ten thousand people during a period covering at least 250 days after the confirmation of the tenth case. Dynamic analysis is performed by constructing Minimal Spanning Trees (MST) and identifying groups of similarity in contagions evolution in 95 time windows of a 150-day amplitude that moves one day at a time. The intensity measure considered was the number of times countries belonged to a similar performance group in constructed time windows. Groups' composition is not stable, indicating that the COVID-19 evolution needs to be treated as a dynamic problem in the context of complex systems. Three communities were identified by applying the Louvain algorithm. Identified communities analysis according to each country's socioeconomic characteristics and variables related to the disease sheds light on whether there is any suggested course of action. Even when strong testing and tracing cases policies may be related with a more stable dynamic of the disease, results indicate that communities are conformed by countries with diverse characteristics. The best option to counteract the harmful effects of a pandemic may be having strong health systems in place, with contingent capacity to deal with unforeseen events and available resources capable of a rapid expansion of its capacity.</p>


2019 ◽  
Vol 47 (2) ◽  
pp. 323-336
Author(s):  
Mengta Yang ◽  
Reza Modarres ◽  
Lingzhe Guo

Sign in / Sign up

Export Citation Format

Share Document