scholarly journals Double hypergeometric Lévy processes and self-similarity

2021 ◽  
Vol 58 (1) ◽  
pp. 254-273
Author(s):  
Andreas E. Kyprianou ◽  
Juan Carlos Pardo ◽  
Matija Vidmar

AbstractMotivated by a recent paper (Budd (2018)), where a new family of positive self-similar Markov processes associated to stable processes appears, we introduce a new family of Lévy processes, called the double hypergeometric class, whose Wiener–Hopf factorisation is explicit, and as a result many functionals can be determined in closed form.

2016 ◽  
Vol 48 (A) ◽  
pp. 153-158
Author(s):  
Emma L. Horton ◽  
Andreas E. Kyprianou

AbstractKuznetsov and co-authors in 2011‒14 introduced the family of hypergeometric Lévy processes. They appear naturally in the study of fluctuations of stable processes when one analyses stable processes through the theory of positive self-similar Markov processes. Hypergeometric Lévy processes are defined through their characteristic exponent, which, as a complex-valued function, has four independent parameters. In 2014 it was shown that the definition of a hypergeometric Lévy process could be taken to include a greater range of the aforesaid parameters than originally specified. In this short article, we push the parameter range even further.


Author(s):  
UWE FRANZ

We show how classical Markov processes can be obtained from quantum Lévy processes. It is shown that quantum Lévy processes are quantum Markov processes, and sufficient conditions for restrictions to subalgebras to remain quantum Markov processes are given. A classical Markov process (which has the same time-ordered moments as the quantum process in the vacuum state) exists whenever we can restrict to a commutative subalgebra without losing the quantum Markov property.8 Several examples, including the Azéma martingale, with explicit calculations are presented. In particular, the action of the generator of the classical Markov processes on polynomials or their moments are calculated using Hopf algebra duality.


1998 ◽  
Vol 149 ◽  
pp. 19-32 ◽  
Author(s):  
Kouji Yamamuro

Abstract.For Hunt processes on Rd, strong and weak transience is defined by finiteness and infiniteness, respectively, of the expected last exit times from closed balls. Under some condition, which is satisfied by Lévy processes and Ornstein-Uhlenbeck type processes, this definition is expressed in terms of the transition probabilities. A criterion is given for strong and weak transience of Ornstein-Uhlenbeck type processes on Rd, using their Lévy measures and coefficient matrices of linear drift terms. An example is discussed.


2008 ◽  
Vol 45 (04) ◽  
pp. 1140-1160 ◽  
Author(s):  
A. E. Kyprianou ◽  
J. C. Pardo

In this paper we study the α-stable continuous-state branching processes (for α ∈ (1, 2]) and the α-stable continuous-state branching processes conditioned never to become extinct in the light of positive self-similarity. Understanding the interaction of the Lamperti transformation for continuous-state branching processes and the Lamperti transformation for positive, self-similar Markov processes gives access to a number of explicit results concerning the paths of α-stable continuous-state branching processes and α-stable continuous-state branching processes conditioned never to become extinct.


Nonlinearity ◽  
2017 ◽  
Vol 30 (7) ◽  
pp. 2592-2611
Author(s):  
Marco Zamparo

1993 ◽  
Vol 132 ◽  
pp. 141-153 ◽  
Author(s):  
Toshiro Watanabe

In this paper it is shown that there is a unimodal Levy process with oscillating mode. After the author first constructed an example of such a self-decomposable process, Sato pointed out that it belongs to the class of semi-stable processes with β < 0. We prove that all non-symmetric semi-stable self-decomposable processes with β < 0 have oscillating modes.


Sign in / Sign up

Export Citation Format

Share Document