scholarly journals GORENSTEIN PROJECTIVE OBJECTS IN FUNCTOR CATEGORIES

2018 ◽  
Vol 240 ◽  
pp. 1-41 ◽  
Author(s):  
SONDRE KVAMME

Let $k$ be a commutative ring, let ${\mathcal{C}}$ be a small, $k$-linear, Hom-finite, locally bounded category, and let ${\mathcal{B}}$ be a $k$-linear abelian category. We construct a Frobenius exact subcategory ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))$ of the functor category ${\mathcal{B}}^{{\mathcal{C}}}$, and we show that it is a subcategory of the Gorenstein projective objects ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ in ${\mathcal{B}}^{{\mathcal{C}}}$. Furthermore, we obtain criteria for when ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))={\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$. We show in examples that this can be used to compute ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ explicitly.


2018 ◽  
Vol 20 (06) ◽  
pp. 1750071 ◽  
Author(s):  
Abhishek Banerjee

For a small abelian category [Formula: see text], Auslander’s formula allows us to express [Formula: see text] as a quotient of the category [Formula: see text] of coherent functors on [Formula: see text]. We consider an abelian category with the added structure of a cohereditary torsion pair [Formula: see text]. We prove versions of Auslander’s formula for the torsion-free class [Formula: see text] of [Formula: see text], for the derived torsion-free class [Formula: see text] of the triangulated category [Formula: see text] as well as the induced torsion-free class in the ind-category [Formula: see text] of [Formula: see text]. Further, for a given regular cardinal [Formula: see text], we also consider the category [Formula: see text] of [Formula: see text]-presentable objects in the functor category [Formula: see text]. Then, under certain conditions, we show that the torsion-free class [Formula: see text] can be recovered as a subquotient of [Formula: see text].



1975 ◽  
Vol 19 (4) ◽  
pp. 375-381 ◽  
Author(s):  
S. Cormack

Consider a class C of projective R-modules, where R is a commutative ring with identity, which satisfies the conditions of (2), namely that C is closed under the operations of direct sum and isomorphism and C contains the zero module. Following (2) a module M is said to have C-cotype n (respectively C-type n) if it has a projective resolution … → Pn → P0 → M → 0 with Pi ∈ C for i>n (respectively Pi ∈ C for i≦n). Let S be the class of modules of C-cotype −1, equivalently of C-type infinity. It is assumed throughout that S is a Serre Class. We define an abelian category of modules with the property that C-cotype is homological dimension in while in the case C = 0, S is just the category of R-modules. It follows that all categorical results on homological dimension also hold for cotype.



2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Septimiu Crivei

Flat objects of a finitely accessible additive category are described in terms of some objects of the associated functor category of , called strongly flat functors. We study closure properties of the class of strongly flat functors, and we use them to deduce the known result that every object of a finitely accessible abelian category has a flat cover.



1971 ◽  
Vol 23 (2) ◽  
pp. 374-380 ◽  
Author(s):  
H. B. Stauffer

Our aim in this paper is to demonstrate a relationship between left exact and representable functors. More precisely, in the functor category whose objects are the additive functors from the dual of an abelian category 𝔄 to the category of abelian groups and whose morphisms are the natural transformations between them, the left exact functors can be characterized as those equivalent to a direct limit of representable functors taken over a directed class. The proof will proceed in the following manner. Lambek [3] and Ulmer [7] have shown that any functor T in can be expressed as a direct limit of representable functors taken over a comma category. When T is left exact, it is easily observed that this comma category is a filtered category. When T is left exact, it is easily observed that this comma category is a filtered category.



2019 ◽  
Vol 56 (2) ◽  
pp. 252-259
Author(s):  
Ebrahim Hashemi ◽  
Fatemeh Shokuhifar ◽  
Abdollah Alhevaz

Abstract The intersection of all maximal right ideals of a near-ring N is called the quasi-radical of N. In this paper, first we show that the quasi-radical of the zero-symmetric near-ring of polynomials R0[x] equals to the set of all nilpotent elements of R0[x], when R is a commutative ring with Nil (R)2 = 0. Then we show that the quasi-radical of R0[x] is a subset of the intersection of all maximal left ideals of R0[x]. Also, we give an example to show that for some commutative ring R the quasi-radical of R0[x] coincides with the intersection of all maximal left ideals of R0[x]. Moreover, we prove that the quasi-radical of R0[x] is the greatest quasi-regular (right) ideal of it.



Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.



2019 ◽  
Vol 12 (05) ◽  
pp. 1950079
Author(s):  
Ahmad Al Khalaf ◽  
Iman Taha ◽  
Orest D. Artemovych ◽  
Abdullah Aljouiiee

Earlier D. A. Jordan, C. R. Jordan and D. S. Passman have investigated the properties of Lie rings Der [Formula: see text] of derivations in a commutative differentially prime rings [Formula: see text]. We study Lie rings Der [Formula: see text] in the non-commutative case and prove that if [Formula: see text] is a [Formula: see text]-torsion-free [Formula: see text]-semiprime ring, then [Formula: see text] is a semiprime Lie ring or [Formula: see text] is a commutative ring.



Author(s):  
Amr Ali Al-Maktry

AbstractLet R be a finite commutative ring. The set $${{\mathcal{F}}}(R)$$ F ( R ) of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units $${{\mathcal{F}}}(R)^\times $$ F ( R ) × is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on $$R[x]/(x^2)=R[\alpha ]$$ R [ x ] / ( x 2 ) = R [ α ] , the ring of dual numbers over R, and show that the group $${\mathcal{P}}_{R}(R[\alpha ])$$ P R ( R [ α ] ) , consisting of those polynomial permutations of $$R[\alpha ]$$ R [ α ] represented by polynomials in R[x], is embedded in a semidirect product of $${{\mathcal{F}}}(R)^\times $$ F ( R ) × by the group $${\mathcal{P}}(R)$$ P ( R ) of polynomial permutations on R. In particular, when $$R={\mathbb{F}}_q$$ R = F q , we prove that $${\mathcal{P}}_{{\mathbb{F}}_q}({\mathbb{F}}_q[\alpha ])\cong {\mathcal{P}}({\mathbb{F}}_q) \ltimes _\theta {{\mathcal{F}}}({\mathbb{F}}_q)^\times $$ P F q ( F q [ α ] ) ≅ P ( F q ) ⋉ θ F ( F q ) × . Furthermore, we count unit-valued polynomial functions on the ring of integers modulo $${p^n}$$ p n and obtain canonical representations for these functions.



2020 ◽  
Vol 53 (1) ◽  
pp. 325-331
Author(s):  
Malik Bataineh ◽  
Rashid Abu-Dawwas ◽  
Jenan Shtayat

AbstractLet G be a group with identity e, R be a G-graded commutative ring with a nonzero unity 1 and M be a G-graded R-module. In this article, we introduce and study the concept of almost graded multiplication modules as a generalization of graded multiplication modules; a graded R-module M is said to be almost graded multiplication if whenever a\in h(R) satisfies {\text{Ann}}_{R}(aM)={\text{Ann}}_{R}(M), then (0{:}_{M}a)=\{0\}. Also, we introduce and study the concept of almost graded comultiplication modules as a generalization of graded comultiplication modules; a graded R-module M is said to be almost graded comultiplication if whenever a\in h(R) satisfies {\text{Ann}}_{R}(aM)={\text{Ann}}_{R}(M), then aM=M. We investigate several properties of these classes of graded modules.



Sign in / Sign up

Export Citation Format

Share Document