FUJITA DECOMPOSITION AND MASSEY PRODUCT FOR FIBERED VARIETIES
Abstract Let $f\colon X\to B$ be a semistable fibration where X is a smooth variety of dimension $n\geq 2$ and B is a smooth curve. We give the structure theorem for the local system of the relative $1$ -forms and of the relative top forms. This gives a neat interpretation of the second Fujita decomposition of $f_*\omega _{X/B}$ . We apply our interpretation to show the existence, up to base change, of higher irrational pencils and on the finiteness of the associated monodromy representations under natural Castelnuovo-type hypothesis on local subsystems. Finally, we give a criterion to have that X is not of Albanese general type if $B=\mathbb {P}^1$ .