Immediate smoothing and global solutions for initial data in L1 × W1,2 in a Keller–Segel system with logistic terms in 2D

Author(s):  
Johannes Lankeit

This paper deals with the logistic Keller–Segel model \[ \begin{cases} u_t = \Delta u - \chi \nabla\cdot(u\nabla v) + \kappa u - \mu u^2, \\ v_t = \Delta v - v + u \end{cases} \] in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in $\bar {\Omega }\times (0,\infty )$ .

Author(s):  
J. Solà-Morales ◽  
M. València

SynopsisThe semilinear damped wave equationssubject to homogeneous Neumann boundary conditions, admit spatially homogeneous solutions (i.e. u(x, t) = u(t)). In order that every solution tends to a spatially homogeneous one, we look for conditions on the coefficients a and d, and on the Lipschitz constant of f with respect to u.


1988 ◽  
Vol 40 (2) ◽  
pp. 502-512 ◽  
Author(s):  
Richard Beals ◽  
Nancy K. Stanton

Let Ω be a compact complex n + 1-dimensional Hermitian manifold with smooth boundary M. In [2] we proved the following.THEOREM 1. Suppose satisfies condition Z(q) with 0 ≦ q ≦ n. Let □p,q denote the -Laplacian on (p, q) forms onwhich satisfy the -Neumann boundary conditions. Then as t → 0;,(0.1)(If q = n + 1, the -Neumann boundary condition is the Dirichlet boundary condition and the corresponding result is classical.)Theorem 1 is a version for the -Neumann problem of results initiated by Minakshisundaram and Pleijel [8] for the Laplacian on compact manifolds and extended by McKean and Singer [7] to the Laplacian with Dirichlet or Neumann boundary conditions and by Greiner [5] and Seeley [9] to elliptic boundary value problems on compact manifolds with boundary. McKean and Singer go on to show that the coefficients in the trace expansion are integrals of local geometric invariants.


2007 ◽  
Vol 17 (01) ◽  
pp. 125-153 ◽  
Author(s):  
HAO WU ◽  
MAURIZIO GRASSELLI ◽  
SONGMU ZHENG

This paper is concerned with the asymptotic behavior of global solutions to a parabolic–hyperbolic coupled system which describes the evolution of the relative temperature θ and the order parameter χ in a material subject to phase transitions. For the system with homogeneous Neumann boundary conditions for both ¸ and χ, under the assumption that the nonlinearities λ and ϕ are real analytic functions, we prove the convergence of a global solution to an equilibrium as time goes to infinity by means of a suitable Łojasiewicz–Simon type inequality.


1993 ◽  
Vol 123 (6) ◽  
pp. 1031-1040 ◽  
Author(s):  
Antonio L. Pereira

SynopsisFor the reaction diffusion equationwith homogeneous Neumann boundary conditions, we give results on the generic hyperbolicity of equilibria with respect to a for fixed f and with respect to f for fixed a.


Sign in / Sign up

Export Citation Format

Share Document