Immediate smoothing and global solutions for initial data in L1 × W1,2 in a Keller–Segel system with logistic terms in 2D
Keyword(s):
This paper deals with the logistic Keller–Segel model \[ \begin{cases} u_t = \Delta u - \chi \nabla\cdot(u\nabla v) + \kappa u - \mu u^2, \\ v_t = \Delta v - v + u \end{cases} \] in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in $\bar {\Omega }\times (0,\infty )$ .
1987 ◽
Vol 105
(1)
◽
pp. 117-126
◽
Keyword(s):
1988 ◽
Vol 40
(2)
◽
pp. 502-512
◽
2019 ◽
Vol 395
◽
pp. 166-185
◽
2007 ◽
Vol 17
(01)
◽
pp. 125-153
◽
2012 ◽
Vol 218
(13)
◽
pp. 7279-7294
◽
1993 ◽
Vol 123
(6)
◽
pp. 1031-1040
◽
2020 ◽
Vol 79
(8)
◽
pp. 2322-2335