scholarly journals On regular algebraic hypersurfaces with non-zero constant mean curvature in Euclidean spaces

Author(s):  
Alexandre Paiva Barreto ◽  
Francisco Fontenele ◽  
Luiz Hartmann

We prove that there are no regular algebraic hypersurfaces with non-zero constant mean curvature in the Euclidean space $\mathbb {R}^{n+1},\,\;n\geq 2,$ defined by polynomials of odd degree. Also we prove that the hyperspheres and the round cylinders are the only regular algebraic hypersurfaces with non-zero constant mean curvature in $\mathbb {R}^{n+1}, n\geq 2,$ defined by polynomials of degree less than or equal to three. These results give partial answers to a question raised by Barbosa and do Carmo.

2021 ◽  
Vol 30 (1) ◽  
pp. 29-40
Author(s):  
KADRI ARSLAN ◽  
ALIM SUTVEREN ◽  
BETUL BULCA

Self-similar flows arise as special solution of the mean curvature flow that preserves the shape of the evolving submanifold. In addition, \lambda -hypersurfaces are the generalization of self-similar hypersurfaces. In the present article we consider \lambda -hypersurfaces in Euclidean spaces which are the generalization of self-shrinkers. We obtained some results related with rotational hypersurfaces in Euclidean 4-space \mathbb{R}^{4} to become self-shrinkers. Furthermore, we classify the general rotational \lambda -hypersurfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and rotational \lambda -hypersurfaces in \mathbb{R}^{4}.


2019 ◽  
Vol 16 (05) ◽  
pp. 1950076 ◽  
Author(s):  
Rafael López ◽  
Željka Milin Šipuš ◽  
Ljiljana Primorac Gajčić ◽  
Ivana Protrka

In this paper, we study harmonic evolutes of [Formula: see text]-scrolls, that is, of ruled surfaces in Lorentz–Minkowski space having no Euclidean counterparts. Contrary to Euclidean space where harmonic evolutes of surfaces are surfaces again, harmonic evolutes of [Formula: see text]-scrolls turn out to be curves. In particular, we show that the harmonic evolute of a [Formula: see text]-scroll of constant mean curvature together with its base curve forms a null Bertrand pair. This allows us to characterize [Formula: see text]-scrolls of constant mean curvature and reconstruct them from a given null curve which is their harmonic evolute.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 710 ◽  
Author(s):  
Bang-Yen Chen

The well known Chen’s conjecture on biharmonic submanifolds in Euclidean spaces states that every biharmonic submanifold in a Euclidean space is a minimal one. For hypersurfaces, we know from Chen and Jiang that the conjecture is true for biharmonic surfaces in E 3 . Also, Hasanis and Vlachos proved that biharmonic hypersurfaces in E 4 ; and Dimitric proved that biharmonic hypersurfaces in E m with at most two distinct principal curvatures. Chen and Munteanu showed that the conjecture is true for δ ( 2 ) -ideal and δ ( 3 ) -ideal hypersurfaces in E m . Further, Fu proved that the conjecture is true for hypersurfaces with three distinct principal curvatures in E m with arbitrary m. In this article, we provide another solution to the conjecture, namely, we prove that biharmonic surfaces do not exist in any Euclidean space with parallel normalized mean curvature vectors.


1972 ◽  
Vol 45 ◽  
pp. 139-165 ◽  
Author(s):  
Joseph Erbacher

In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces Mn of non-negative sectional curvature iso-metrically immersed in the Euclidean space Rn+1 or the sphere Sn+1 with constant mean curvature under the additional assumption that the scalar curvature of Mn is constant. This additional assumption is automatically satisfied if Mn is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds Mn of non-negative sectional curvature isometrically immersed in the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature under the additional assumptions that Mn has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is paral lel with respect to the connection in the normal bundle. The assumption that Mn has constant scalar curvature is automatically satisfied if Mn is compact. The assumption on the normal connection is automatically sa tisfied if p = 2 and the mean curvature normal is not zero.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1211 ◽  
Author(s):  
Rafael López

We investigate the differences and similarities of the Dirichlet problem of the mean curvature equation in the Euclidean space and in the Lorentz-Minkowski space. Although the solvability of the Dirichlet problem follows standards techniques of elliptic equations, we focus in showing how the spacelike condition in the Lorentz-Minkowski space allows dropping the hypothesis on the mean convexity, which is required in the Euclidean case.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chao Yang ◽  
Jiancheng Liu

In this paper, we show that biharmonic hypersurfaces with at most two distinct principal curvatures in pseudo-Riemannian space form Nsn+1c with constant sectional curvature c and index s have constant mean curvature. Furthermore, we find that such biharmonic hypersurfaces Mr2k−1 in even-dimensional pseudo-Euclidean space Es2k, Ms−12k−1 in even-dimensional de Sitter space Ss2kcc>0, and Ms2k−1 in even-dimensional anti-de Sitter space ℍs2kcc<0 are minimal.


2020 ◽  
Vol 2020 (763) ◽  
pp. 223-249 ◽  
Author(s):  
Martin Traizet

AbstractWe construct constant mean curvature surfaces in euclidean space with genus zero and n ends asymptotic to Delaunay surfaces using the DPW method.


Sign in / Sign up

Export Citation Format

Share Document