scholarly journals Optimal Hardy-weights for the (p, A)-Laplacian with a potential term

Author(s):  
Idan Versano

We construct new optimal $L^{p}$ Hardy-type inequalities for elliptic Schrödinger-type operators with a potential term.

2013 ◽  
Vol 56 (2) ◽  
pp. 427-441 ◽  
Author(s):  
David G. Costa ◽  
João Marcos do Ó ◽  
K. Tintarev

AbstractWe prove the compactness of critical Sobolev embeddings with applications to nonlinear singular Schrödinger equations and provide a unified treatment in dimensions N > 2 and N = 2, based on a somewhat unexpectedly broad array of parallel properties between spaces $\smash{\mathcal{D}^{1,2}(\mathbb{R}^N)}$ and H10 of the unit disc. These properties include Leray inequality for N = 2 as a counterpart of Hardy inequality for N > 2, pointwise estimates by ground states r(2−N)/2 and $\smash{\sqrt{\log(1/r)}}$ of the respective Hardy-type inequalities, as well as compactness of the limiting Sobolev embeddings once the Sobolev norm is appended by a potential term whose growth at singularities exceeds that of the corresponding Hardy-type potential.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ahmed A. El-Deeb ◽  
Hamza A. Elsennary ◽  
Dumitru Baleanu

1998 ◽  
Vol 194 (1) ◽  
pp. 23-33 ◽  
Author(s):  
D. E. Edmunds ◽  
R. Hurri-Syrjänen

2017 ◽  
Vol 11 (2) ◽  
pp. 438-457 ◽  
Author(s):  
Sajid Iqbal ◽  
Josip Pečarić ◽  
Muhammad Samraiz ◽  
Zivorad Tomovski

2021 ◽  
Vol 45 (5) ◽  
pp. 797-813
Author(s):  
SAJID IQBAL ◽  
◽  
GHULAM FARID ◽  
JOSIP PEČARIĆ ◽  
ARTION KASHURI

In this paper we present variety of Hardy-type inequalities and their refinements for an extension of Riemann-Liouville fractional derivative operators. Moreover, we use an extension of extended Riemann-Liouville fractional derivative and modified extension of Riemann-Liouville fractional derivative using convex and monotone convex functions. Furthermore, mean value theorems and n-exponential convexity of the related functionals is discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Usama Hanif ◽  
Ammara Nosheen ◽  
Rabia Bibi ◽  
Khuram Ali Khan ◽  
Hamid Reza Moradi

In this paper, Jensen and Hardy inequalities, including Pólya–Knopp type inequalities for superquadratic functions, are extended using Riemann–Liouville delta fractional integrals. Furthermore, some inequalities are proved by using special kernels. Particular cases of obtained inequalities give us the results on time scales calculus, fractional calculus, discrete fractional calculus, and quantum fractional calculus.


Sign in / Sign up

Export Citation Format

Share Document