scholarly journals Biconcave-function characterisations of UMD and Hilbert spaces

1993 ◽  
Vol 47 (2) ◽  
pp. 297-306 ◽  
Author(s):  
Jinsik Mok Lee

Suppose that X is a real or complex Banach space with norm |·|. Then X is a Hilbert space if and only iffor all x in X and all X-valued Bochner integrable functions Y on the Lebesgue unit interval satisfying EY = 0 and |x − Y| ≤ 2 almost everywhere. This leads to the following biconcave-function characterisation: A Banach space X is a Hilbert space if and only if there is a biconcave function η: {(x, y) ∈ X × X: |x − y| ≤ 2} → R such that η(0, 0) = 2 andIf the condition η(0, 0) = 2 is eliminated, then the existence of such a function η characterises the class UMD (Banach spaces with the unconditionally property for martingale differences).

1989 ◽  
Vol 31 (1) ◽  
pp. 71-72
Author(s):  
J. E. Jamison ◽  
Pei-Kee Lin

Let X be a complex Banach space. For any bounded linear operator T on X, the (spatial) numerical range of T is denned as the setIf V(T) ⊆ R, then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78] proved that if the set {H + iK:H and K are hermitian} contains all operators, then X is a Hilbert space. It is natural to ask the following question.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


Author(s):  
M. Khandaqji ◽  
Sh. Al-Sharif

LetXbe a Banach space and letLΦ(I,X)denote the space of OrliczX-valued integrable functions on the unit intervalIequipped with the Luxemburg norm. In this paper, we present a distance formula dist(f1,f2,LΦ(I,G))Φ, whereGis a closed subspace ofX, andf1,f2∈LΦ(I,X). Moreover, some related results concerning best simultaneous approximation inLΦ(I,X)are presented.


1978 ◽  
Vol 21 (2) ◽  
pp. 213-219 ◽  
Author(s):  
R. Schöneberg

Around 1960, the Russian mathematician Kachurovski [1] introduced the notion of monotone operators in Hilbert spaces: Let E be a Hilbert space and X ⊂ E. An operator T:X→E is said to be monotone, iff.


1977 ◽  
Vol 24 (2) ◽  
pp. 129-138 ◽  
Author(s):  
R. J. Fleming ◽  
J. E. Jamison

AbstractLet Lp(Ω, K) denote the Banach space of weakly measurable functions F defined on a finite measure space and taking values in a separable Hilbert space K for which ∥ F ∥p = ( ∫ | F(ω) |p)1/p < + ∞. The bounded Hermitian operators on Lp(Ω, K) (in the sense of Lumer) are shown to be of the form , where B(ω) is a uniformly bounded Hermitian operator valued function on K. This extends the result known for classical Lp spaces. Further, this characterization is utilized to obtain a new proof of Cambern's theorem describing the surjective isometries of Lp(Ω, K). In addition, it is shown that every adjoint abelian operator on Lp(Ω, K) is scalar.


1985 ◽  
Vol 97 (2) ◽  
pp. 321-324
Author(s):  
J. R. Partington

Let X be a complex Banach space and T a bounded operator on X. The numerical range of T is defined by


2016 ◽  
Vol 2016 ◽  
pp. 1-3
Author(s):  
Sun Kwang Kim

We study a numerical radius preserving onto isometry onL(X). As a main result, whenXis a complex Banach space having both uniform smoothness and uniform convexity, we show that an onto isometryTonL(X)is numerical radius preserving if and only if there exists a scalarcTof modulus 1 such thatcTTis numerical range preserving. The examples of such spaces are Hilbert space andLpspaces for1<p<∞.


Author(s):  
J. Martinez Moreno

Let J be a complex Banach space and a complex Jordan algebra equipped with an algebra involution *. Then J is a Jordan C*-algebra if the following conditions are satisfied:(Ua is defined on page 3).


1997 ◽  
Vol 56 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Maurice Hasson

Let T: B → B be a bounded linear operator on the complex Banach space B and let f(z) be analytic on a domain D containing the spectrum Sp(T) of T. Then f(T) is defined bywhere C is a contour surrounding SP(T) and contained in D.


2014 ◽  
Vol 57 (3) ◽  
pp. 665-680
Author(s):  
H. S. MUSTAFAYEV

AbstractLet A be an invertible operator on a complex Banach space X. For a given α ≥ 0, we define the class $\mathcal{D}$Aα(ℤ) (resp. $\mathcal{D}$Aα (ℤ+)) of all bounded linear operators T on X for which there exists a constant CT>0, such that $ \begin{equation*} \Vert A^{n}TA^{-n}\Vert \leq C_{T}\left( 1+\left\vert n\right\vert \right) ^{\alpha }, \end{equation*} $ for all n ∈ ℤ (resp. n∈ ℤ+). We present a complete description of the class $\mathcal{D}$Aα (ℤ) in the case when the spectrum of A is real or is a singleton. If T ∈ $\mathcal{D}$A(ℤ) (=$\mathcal{D}$A0(ℤ)), some estimates for the norm of AT-TA are obtained. Some results for the class $\mathcal{D}$Aα (ℤ+) are also given.


Sign in / Sign up

Export Citation Format

Share Document